OCP

Oracle: Certified Professional
Java* SE 8 Programmer ||

STUDY GUIDE

Covers 100% of exam objectives, including advanced class design,

functional programming, concurrency, JDBC, and much more...
Includes online interactive learning environment with:

+ 3 custom practice exams
+ More than 250 electronic flashcards

+ Searchable key term glossary

OCP

Oracle’ Certified Professional

Java“ SE 8 Programmer Il
Study Guide

OCP

Oracle’ Certified Professional

Java“ SE 8 Programmer Il
Study Guide

Jeanne Boyarsky
Scott Selikoff

_«SYBEX

A Wiley Brand

Senior Acquisitions Editor: Kenyon Brown
Development Editor: Gary Schwartz

Technical Editors: Ernest Friedman-Hill and Matt Dalen
Production Editor: Dassi Zeidel

Copy Editor: Linda Recktenwald

Editorial Manager: Mary Beth Wakefield

Production Manager: Kathleen Wisor

Associate Publisher: Jim Minatel

Supervising Producer: Rich Graves

Book Designers: Judy Fung and Bill Gibson
Proofreader: Josh Chase, Word One New York
Indexer: Ted Laux

Project Coordinator, Cover: Brent Savage

Cover Designer: Wiley

Cover Image: ©Getty Images Inc./Jeremy Woodhouse

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-06790-0
ISBN: 978-1-119-06788-7 (ebk.)
ISBN: 978-1-119-06789-4 (ebk.)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of

the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warran-
ties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or
extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent
professional person should be sought. Neither the publisher nor the author shall be liable for damages arising
herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential
source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that
Internet Web sites listed in this work may have changed or disappeared between when this work was written
and when it is read.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download
this material at http://booksupport.wiley.com. For more information about Wiley products, visit
www.wiley.com.

Library of Congress Control Number: 2015951679

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. Oracle and Java are registered trademarks of Oracle America, Inc. All other trademarks are
the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor
mentioned in this book.

10987654321

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://www.wiley.com/go/permissions

To the programmers on FIRST robotics team FRC 694 StuyPulse

— Jeanne

To my newborn daughters Olivia and Sophia, I love you both more and
more every day.

— Scott

Acknowledgments

Jeanne and Scott would like to thank numerous individuals for their contribution to this
book. Thank you, Gary Schwartz, for guiding us through the process and making the book
better in so many ways. Thank you, Ernest Friedman-Hill, for being our Technical Editor
as we wrote this book. Ernest pointed out many subtle errors in addition to the big ones.
And thank you, Matt Dalen, for being our Technical Proofreader and finding the errors
that managed to sneak by even Ernest. This book also wouldn’t be possible without many
people at Wiley, including Kenyon Brown, Dassi Zeidel, Mary Beth Wakefield, and so
many others.

Jeanne would personally like to thank Chris Kreussling and Elena Felder for their
feedback on early drafts of the trickier material. Elena even helped figure out a good
way to explain upper bounds. Roel De Nijs reviewed the Java 8 date/time material for
words that native English speakers take for granted, and he responded to lots of posts in
the CodeRanch.com OCA forum on our first book. To all of the people at work and at
CodeRanch.com who were so excited for me about writing this book, you made it even
more exciting when we published our first book. Jeanne would like to thank the mem-
bers of FIRST robotics FRC team 694 for their support. It was an awesome feeling seeing
high school students pore over the book while waiting for dinner the night the hard copy
arrived. Go StuyPulse! See if you can find JoeBot in this book. Finally, Jeanne would like to
thank Scott for being a great co-author again.

Scott could not have reached this point without the help of a small army of people, led
by his perpetually understanding wife Patti, the most wonderful mother their twin daugh-
ters could ask for. Professor Johannes Gehrke of Cornell University always believed in him
and knew he would excel in his career. Jeanne’s patience and striving for excellence was
invaluable in creating this second book. A big thanks to fellow new father Matt Dalen, who
has been a wonderful friend, sounding board, and technical reviewer over the last year. Joel
McNary introduced Scott to CodeRanch.com and encouraged him to post regularly—a
step that changed his life. Finally, Scott would like to thank his mother and retired teacher
Barbara Selikoff, for teaching him the value of education, and his father Mark Selikoff, for
instilling in him the benefits of working hard.

Finally, both Jeanne and Scott would like to give a big thank-you to the readers of our
OCA 8 book. Hearing from all of you who enjoyed the book and passed the exam was
great. We’d also like to thank those who pointed out errors and made suggestions for
improvements in our OCA book. As of July 2015, the top three were Mushfig Mammadov,
Elena Felder, and Cédric Georges. Thank you for your attention to detail! We also would
like to thank Mathias Bader, Maaike Zijderveld, Vincent Botteman, Edward Rance,
Gabriel Jesus, Ilya Danilov, Marc ter Braak, Dominik Bauer, Saad Benbouzid, Evgeny
Kapinos, Helen Colson, Alex Lord, and Kevin Abel.

About the Authors

Jeanne Boyarsky has worked as a Java developer for more than 13 years at a bank in New
York City, where she develops, mentors, and conducts training. Besides being a senior mod-
erator at CodeRanch.com in her free time, she leads the team that works on the forum’s
code base. Jeanne also mentors the programming division of a FIRST robotics team, where
she works with students just getting started with Java.

Jeanne got her Bachelor of Arts degree in 2002 in Computer Science and her Master’s in
Computer Information Technology in 2005. She enjoyed getting her Master’s degree in an
online program while working full time. This was before online education was cool! Jeanne
is also a Distinguished Toastmaster and a Scrum Master. You can find out more about
Jeanne at http://www.coderanch.com/how-to/java/BioJeanneBoyarsky.

Scott Selikoff is a professional software consultant, author, and owner of Selikoff
Solutions, LLC, which provides software development solutions to businesses in the tri-
state New York City area. Skilled in a plethora of software languages and platforms,
Scott specializes in database-driven systems, web-based applications, and service-oriented
architectures.

A native of Toms River, New Jersey, Scott achieved his Bachelor of Arts from Cornell
University in Mathematics and Computer Science in 2002, after three years of study.

In 2003, he received his Master of Engineering in Computer Science, also from Cornell
University.

As someone with a deep love of education, Scott has always enjoyed teaching others new
concepts. He’s given lectures at Cornell University and Rutgers University, as well as con-
ferences including The Server Side Java Symposium. Scott lives in New Jersey with his lov-
ing wife, amazing twin baby girls, and two very playful dogs. You can find out more about
Scott at http://www. linkedin.com/in/selikoff.

Jeanne and Scott are both moderators on the CodeRanch.com forums, and they can
be reached there for questions and comments. They also co-author a technical blog called
Down Home Country Coding at http://www.selikoff.net.

http://www.coderanch.com/how-to/java/BioJeanneBoyarsky
http://www.linkedin.com/in/selikoff
http://www.selikoff.net

Contents at a Glance

Introduction

Assessment Test

Chapter 1 Advanced Class Design
Chapter 2 Design Patterns and Principles
Chapter 3 Generics and Collections
Chapter 4 Functional Programming
Chapter 5 Dates, Strings, and Localization
Chapter 6 Exceptions and Assertions
Chapter 7 Concurrency

Chapter 8 10

Chapter 9 NIO.2

Chapter 10 JDBC

Appendix A Answers to Review Questions

Appendix B Study Tips
Appendix C Upgrading from Java 6 or Earlier

Index

xix
XXXViil
1
47
103
171
233
283
325
405
453
505
547
575
595

649

Contents

Introduction xix
Assessment Test XXXVIil
Chapter 1 Advanced Class Design 1
Reviewing OCA Concepts 2

Access Modifiers 2

Overloading and Overriding 4

Abstract Classes 5

Static and Final 6

Imports 6

Using instanceof 7

Understanding Virtual Method Invocation 9

Annotating Overridden Methods 11

Coding equals, hashCode, and toString 13

toString 13

equals 15

hashCode 18

Working with Enums 20

Using Enums in Switch Statements 21

Adding Constructors, Fields, and Methods 22

Creating Nested Classes 24

Member Inner Classes 25

Local Inner Classes 27

Anonymous Inner Classes 29

Static Nested Classes 31

Summary 33

Exam Essentials 34

Review Questions 36

Chapter 2 Design Patterns and Principles 47
Designing an Interface 48

Purpose of an Interface 51

Introducing Functional Programming 52

Defining a Functional Interface 53

Implementing Functional Interfaces with Lambdas 55

Applying the Predicate Interface 60

Implementing Polymorphism 61

Distinguishing between an Object and a Reference 63

Casting Object References 64

xii

Chapter

Contents

3

Understanding Design Principles
Encapsulating Data
Creating JavaBeans
Applying the Is-a Relationship
Applying the Has-a Relationship
Composing Objects

Working with Design Patterns
Applying the Singleton Pattern
Creating Immutable Objects
Using the Builder Pattern
Creating Objects with the Factory Pattern

Summary

Exam Essentials

Review Questions

Generics and Collections

Reviewing OCA Collections
Array and ArrayList
Searching and Sorting
Wrapper Classes and Autoboxing
The Diamond Operator
Working with Generics
Generic Classes
Generic Interfaces
Generic Methods
Interacting with Legacy Code
Bounds
Putting It All Together
Using Lists, Sets, Maps, and Queues
Common Collections Methods
Using the List Interface
Using the Set Interface
Using the Queue Interface
Map
Comparing Collection Types
Comparator vs. Comparable
Comparable
Comparator
Searching and Sorting
Additions in Java 8
Using Method References
Removing Conditionally
Updating All Elements

66
66
69
71
73
74
75
76
82
86
89
93
93
95

103

104
104
105
106
107
108
109
112
114
114
117
122
124
125
127
132
134
138
140
143
143
146
150
152
152
154
155

Chapter

Chapter

a4

5

Contents

Looping through a Collection
Using New Java 8 Map APIs
Summary
Exam Essentials
Review Questions

Functional Programming

Using Variables in Lambdas

Working with Built-In Functional Interfaces
Implementing Supplier
Implementing Consumer and BiConsumer
Implementing Predicate and BiPredicate
Implementing Function and BiFunction
Implementing UnaryOperator and BinaryOperator
Checking Functional Interfaces

Returning an Optional

Using Streams
Creating Stream Sources
Using Common Terminal Operations
Using Common Intermediate Operations
Putting Together the Pipeline
Printing a Stream

Working with Primitives
Creating Primitive Streams
Using Optional with Primitive Streams
Summarizing Statistics
Learning the Functional Interfaces for Primitives

Working with Advanced Stream Pipeline Concepts
Linking Streams to the Underlying Data
Chaining Optionals
Collecting Results

Summary

Exam Essentials

Review Questions

Dates, Strings, and Localization

Working with Dates and Times
Creating Dates and Times
Manipulating Dates and Times
Working with Periods
Working with Durations
Accounting for Daylight Savings Time

xiii

155
155
159
161
162

171

172
173
174
175
177
178
180
181
182
185
188
189
196
200
204
205
205
208
210
210
213
213
214
217
223
224
226

233

234
235
241
244
247
251

Xiv Contents

Reviewing the String class 253
Adding Internationalization
and Localization 255
Picking a Locale 256
Using a Resource Bundle 258
Formatting Numbers 267
Formatting Dates and Times 270
Summary 273
Exam Essentials 274
Review Questions 276
Chapter 6 Exceptions and Assertions 283
Reviewing Exceptions 284
Exceptions Terminology 284
Categories of Exceptions 285
Exceptions on the OCP 286
Try Statement 288
Throw vs. Throws 289
Creating Custom Exceptions 289
Using Multi-catch 291
Using Try-With-Resources 296
Try-With-Resources Basics 298
AutoCloseable 300
Suppressed Exceptions 302
Putting It Together 305
Rethrowing Exceptions 305
Working with Assertions 308
The assert Statement 308
Enabling Assertions 309
Using Assertions 310
Summary 314
Exam Essentials 315
Review Questions 316
Chapter 7 Concurrency 325
Introducing Threads 327
Distinguishing Thread Types 328
Understanding Thread Concurrency 328
Introducing Runnable 330
Creating a Thread 331
Polling with Sleep 334
Creating Threads with the ExecutorService 335

Introducing the Single-Thread Executor 335

Chapter

8

Contents

Shutting Down a Thread Executor
Submitting Tasks
Waiting for Results
Scheduling Tasks
Increasing Concurrency with Pools
Synchronizing Data Access
Protecting Data with Atomic Classes
Improving Access with Synchronized Blocks
Synchronizing Methods
Understanding the Cost of Synchronization
Using Concurrent Collections
Introducing Concurrent Collections
Understanding Memory Consistency Errors
Working with Concurrent Classes
Obtaining Synchronized Collections
Working with Parallel Streams
Creating Parallel Streams
Processing Tasks in Parallel
Processing Parallel Reductions
Managing Concurrent Processes
Creating a CyclicBarrier
Applying the Fork/Join Framework
Identifying Threading Problems
Understanding Liveness
Managing Race Conditions
Summary
Exam Essentials
Review Questions

10

Understanding Files and Directories
Conceptualizing the File System
Introducing the File Class
Introducing Streams
Stream Fundamentals
Stream Nomenclature
Common Stream Operations
Working with Streams
The FileInputStream and FileOutputStream Classes
The FileReader and FileWriter classes

The ObjectInputStream and Object OutputStream Classes

The PrintStream and PrintWriter Classes
Review of Stream Classes

XV

337
338
340
345
348
350
352
354
356
357
358
358
359
360
365
366
366
367
372
377
377
381
387
387
391
392
393
394

405

406
406
407
411
411
412
418
420
420
424
426
432
435

xvi

Chapter

Chapter

Contents

9

Interacting with Users
The Old Way
The New Way

Summary

Exam Essentials

Review Questions

NIO.2

Introducing N10.2
Introducing Path
Creating Paths
Interacting with Paths and Files
Providing Optional Arguments
Using Path Objects
Interacting with Files
Understanding File Attributes
Discovering Basic File Attributes
Improving Access with Views
Presenting the New Stream Methods
Conceptualizing Directory Walking
Walking a Directory
Searching a Directory
Listing Directory Contents
Printing File Contents
Comparing Legacy File and N10.2 Methods
Summary
Exam Essentials
Review Questions

JDBC

Introducing Relational Databases and SQL
Identifying the Structure of a Relational Database
Writing Basic SQL Statements

Introducing the Interfaces of JDBC

Connecting to a Database
Building a JDBC URL
Getting a Database Connection

Obtaining a Statement
Choosing a ResultSet Type
Choosing a ResultSet Concurrency Mode

Executing a Statement

Getting Data from a ResultSet
Reading a ResultSet

437
437
438
442
443
445

453

454
455
456
460
461
462
471
478
478
483
487
487
488
490
491
492
494
495
495
497

505

507
508
510
511
513
513
515
518
519
520
520
524
524

Appendix

Appendix

Appendix

A

C

Contents

Getting Data for a Column
Scrolling ResultSet
Closing Database Resources
Dealing with Exceptions
Summary
Exam Essentials
Review Questions

Answers to Review Questions

Chapter 1: Advanced Class Design
Chapter 2: Design Patterns and Principles
Chapter 3: Generics and Collections
Chapter 4: Functional Programming
Chapter 5: Dates, Strings, and Localization
Chapter 6: Exceptions and Assertions
Chapter 7: Concurrency

Chapter 8: IO

Chapter 9: NIO.2

Chapter 10: JDBC

Study Tips

Studying for the Test
Creating a Study Plan
Comparing Previous Exams
Creating and Running Sample Applications
Taking the Test
Understanding the Question
Taking Advantage of the Exam Software
Using the Provided Writing Material
Choosing the Best Answer
Optimizing Your Time
Getting a Good Night’s Rest

Upgrading from Java 6 or Earlier

Enhancing the Java Language
Using the Diamond Operator
Creating Literals
Making Decisions with Switch

Formatting and Parsing
Using DecimalFormat Flags
Using DateFormat
Formatting
Parsing

xvii

526
529
533
535
536
537
539

547

548
550
553
556
558
560
561
565
568
571

575

576
576
578
579
582
582
587
587
590
591
593

595

596
596
597
598
603
603
603
604
605

xviii

Index

Contents

Custom Date Formats
Applying Locks
Understanding the Lock Framework
Using a ReentrantLock
Understanding Read/Write Locks
Using a ReentrantRead WriteLock
Working with Directories
Traversing Directories
Monitoring a Directory for Changes
Summary
Exam Essentials
Review Questions
Answers to Practice Test

606
607
607
610
614
615
617
618
625
633
633
635
645

649

Introduction

Java recently celebrated its 20th birthday, since it was “born” in 1995. As with anything
20 years old, there is a good amount of history and variation between different versions of
Java. Over the years, the certification exams have changed to cover different topics. The
names of the exams have even changed. This book covers the Java 8 OCP exam along with
the upgrade exams to Java 8.

If you read about the exam on the web, you may see information about the older
names for the exam. The name changes are shown in Figure I.1. Here’s what happened.
Back when Sun Microsystems owned Java, they used to have two exams. The SCJA (Sun
Certified Java Associate) was meant for new programmers and the SCJP (Sun Certified Java
Programmer) was meant for those who wanted broader knowledge. When Oracle bought
Sun Microsystems, they renamed all of the exams from Sun to Oracle, giving us the OCJA
(Oracle Certified Java Associate) and OCJP (Oracle Certified Java Programmer).

FIGURE I.1 Names for the exam

SCJA Renamed 3 OCJA 0CA
5-6 6 7-8

SCJP Renamed 0cJpP
EEL -

7-8

Then Oracle made two strategic decisions with Java 7. They decided to stop updat-
ing the OCJA exam. They also decided to cover more in the programmer space, and they
split it into two exams. Now you first take the OCAJP (Oracle Certified Associate Java
Programmer), also known as Java Programmer I or OCA. Then you take the OCPJP
(Oracle Certified Professional Java Programmer), also known as Java Programmer II or
OCP, and that’s what this book is about. Most people refer to the current exams as OCA 8
and OCP 8.

XX Introduction

Oracle also has upgrade exams in case you took an older version of the SCJP or OCPJP
and you want to upgrade. While most people refer to them as the Java 8 upgrade exam,
there are really two exams, and you choose the correct one based on the certification you
currently hold. Table I.1 describes the exams that this book covers, while Figure 1.2 helps
you decide what exam to take next, assuming that you have passed a prior Java certifica-
tion exam. Our book is designed to help you prepare for any of these three exams, all of
which result in you being OCP 8 certified.

TABLE 1.1 Exams this book covers

Exam Code Name Who Should Take
120-809 Java Programmer Il Holders of the OCA 8 certification
120-810 Upgrade Java SE 7 to Java SE 8 OCP Holders of the OCPJP 7 certification
Programmer
120-813 Upgrade to Java SE 8 OCP (Java SE Holders of any of the following
6 and all prior versions) certifications:

= SCJP/OCJP 6

= SCJP/OCJP5

= SCJP14

= Any older SCJP certs

FIGURE 1.2 Exam prerequisites

Then take...

OCP 8 Exam
[120-809]

OCP 8 Upgrade Exam]

OCA 8 Exam
[120-808]

OCP 7 Exam
[120-804]

If you have

passed...

[120-810]

OCP 8 Upgrade Exam
[120-813]

OCP 7 Upgrade Exam
[120-805]

Any SCJP/OCJP Exam
Java 6 and Earlier

B I N S

Introduction XXi

We try to keep the history to a minimum in this book. There are some places on the
exam where you need to know both an old way and a new way of doing things. When that
happens, we will be sure to tell you what version of Java introduced which way. We will
also let you know about topics that are not on the exam anymore, in case you see questions
on them in the older free online mock exams.

The OCP Exam

All you need to do to become an Oracle Certified Professional for Java 8 is to pass an
exam! That’s it.

Oracle has a tendency to fiddle with the length of the exam and the passing score once
it comes out. Since it’s pretty much guaranteed that whatever we tell you here will become
obsolete, we will instead give you a feel for the range. The OCP exam has varied between
60 and 90 questions since it was first introduced. The score to pass the exam has varied
between 60 percent and 80 percent. The time allowed to take the exam has varied from
two hours to two-and-a-half hours.

Oracle has a tendency to tweak the exam objectives over time as well. They do make
minor additions and deletions from what is covered on the exam. For example, serialization
has been added and removed from the objectives many times over the life of the OCP. As of
this writing, it is on the exam.

While there will likely be minor changes to the scope of the exam, they certainly aren’t a
secret. We’ve created a book page on our blog: http://www.selikoff.net/ocp. If there are
any changes to the topics on the exam after this book is published, we will note them there.

That book page also contains a link to the official exam page, so you can check the
length and passing score that Oracle has chosen for the moment. Finally, all known errata
and links to discussion can be found at http://www.coderanch.com.

Scheduling the Exam

Pearson VUE administers the exam, and it can be taken at any Pearson VUE testing center.
To find a testing center or to register for the exam, go to http://pearsonvue.com. Choose
IT and then Oracle. If you haven’t been to the test center before, we recommend visiting in
advance. Some testing centers are nice and professionally run. Others stick you in a closet
with lots of people talking around you. You don’t want to be taking the test with someone
complaining about his or her broken laptop nearby!

At this time, you can reschedule the exam without penalty until up to 24 hours in
advance. This means that you can register for a convenient time slot well in advance know-
ing that you can delay taking the exam if you aren’t ready by that time. Rescheduling is
easy and can be done completely on the Pearson VUE website. This may change, so check
the rules before paying.

http://www.selikoff.net/ocp
http://www.coderanch.com
http://pearsonvue.com

xxii Introduction

The Day of the Exam

When you go to take the exam, remember to bring two forms of ID, including one that
is government issued. See Pearson’s list of what is an acceptable ID at http://www.
pearsonvue.com/policies/1S.pdf. Try not to bring too much extra with you, because
it will not be allowed into the exam room. While you will be allowed to check your
belongings, it is better to leave extra items at home or in your car.

You will not be allowed to bring paper, your phone, and so on into the exam room with
you. Some centers are stricter than others. At one center, tissues were even taken away from
us! Most centers allow you to keep your ID and money. They watch you taking the exam,
though, so don’t even think about writing notes on money. Some centers place these articles
in a locker and give you the key, whereas others just throw them in an administrator’s desk
drawer. Suffice it to say, if you have something that you really don’t want to lose, we rec-
ommend that you leave it at home.

The exam center will give you writing materials to use during the exam. These are to
be used as scratch paper during the exam to figure out answers and to keep track of your
thought process. The exam center will dispose of them at the end. Notice how we said
“writing materials” rather than “pen and paper.” Actually getting pen and paper is rare.
Most centers provide a small erasable board and a dry erase marker. Before going into the
exam room, we recommend testing that the marker writes and erases.

As we alluded to earlier, some exam centers are more professionally run than others,
so we recommend visiting your local exam center before scheduling the exam if you have
never been there before. Some exam centers also have problems keeping the temperature at
a comfortable level. Regardless of whether it is winter or summer, when you take the exam,
we strongly recommend that you dress in layers, such as a long-sleeve shirt or sweatshirt
over a short-sleeve shirt. This way, you can add/remove layers of clothing to adjust for your
own comfort.

Some exam centers are located in quiet suburban areas while others are near busy city
streets with noisy traffic. Furthermore, you might get lucky and be the only person in your
exam room the day you show up, or you might be unlucky and have 10 other people in the
room coming and going at different times. If you are someone who gets easily distracted
by noise and other people moving around, we recommend that you bring a pair of earplugs
for the exam. Some exam centers will even offer you a pair of sterile earplugs if you ask.
Double-check with your test administrator before using your own, so that they don’t think
you’re trying to cheat!

While many exam centers permit bathroom breaks during the exam with permission,
very few allow you to bring drinks inside. Since these exams are at least two hours long,
make sure that you are well hydrated before you arrive. Just be aware that if you do need to
use the facilities, your exam clock will not be paused.

Finally, if you have any issues like it being unbearably hot, cold, or noisy in your
exam room, you should contact Oracle after you finish taking the exam to let them know

http://www.pearsonvue.com/policies/1S.pdf
http://www.pearsonvue.com/policies/1S.pdf

Introduction xxiii

the quality of the particular testing center was poor. Some exam centers have shown
improvement after receiving such reports.

Finding Out Your Score

In the past, you would find out whether you passed or not right after finishing the exam.
Now you have to wait nervously until you can check your score online.

If you go to the Pearson VUE website, it will just show a status of “Taken” rather
than your result. Oracle uses a separate system for scores. You’ll need to go to http://
certview.oracle.com to find out whether you passed and your score. It doesn’t update
immediately upon taking the test, but we haven’t heard of it taking more than an hour. In
addition to your score, you’ll also see objectives for which you got a question wrong and
instructions on how to get a hardcopy certificate.

At some point, you’ll get an electronic certificate, and some more time after that, you’ll
receive a printed certificate. Sound vague? It is. The times reported to receive certificates
vary widely.

Exam Questions

The OCP exam consists of multiple-choice questions. There are typically four to six possi-
ble answers for each question. If a question has more than one correct answer, the question
specifically states exactly how many correct answers there are. This book does not do that.
We say “choose all that apply” if there might be more than one correct answer to make
the questions harder. This means that the questions in this book are generally harder than
those on the exam. The idea is to give you more practice so that you can spot the correct
answer more easily on the real exam.

You can right-click questions to cross out answers. This lets you mark answers as incor-
rect as you go so that you have less to think about as you read. It also helps you remember
what you’ve eliminated when you go back to questions.

The exam uses two different formats for identifying line numbers. We use both
approaches in this book to get you prepared. The first approach is a comment at the end of
a line such as this:

list.stream()
.map(s-> s.length()) // kil
.forEach(System.out::println);

One or more answer choices will refer to k1. With this approach, imports will be
provided for any class definitions. For code snippets, you can assume that all necessary

http://certview.oracle.com
http://certview.oracle.com

XXiv Introduction

surrounding code is implied. The other approach is placing line numbers at the beginning
of each line, like so:

4: list.stream()
5: .map(s-> s.length())
6: .forEach(System.out::println);

With this approach, the line numbers often begin with numbers higher than 1. This is to
indicate that you are looking at a code snippet rather than a complete class.

If you read about older versions of the exam online, you might see references to drag-
and-drop questions. These questions had you do a puzzle on how to complete a piece of
code. There was also a bug in the exam software that caused your answers to be lost if you
reviewed them. Luckily, these are no longer on the exam.

Getting Started

We recommend reading Appendix B, “Study Tips,” before diving into the technical material in
this book. Knowing how to approach studying will help you make better use of your study time.
Next, make sure that you have downloaded version 8 of the JDK. If you learned Java
some time ago, you might have version 7 or even earlier. Many of the examples won’t even

compile in Java 7.

Also, please check our book page to make sure that Oracle hasn’t changed the objec-
tives. For example, if Oracle changed their mind on whether to include serialization yet
again, you’d want to know that before studying. We will post any updates that you should
know about at http://www.selikoff.net/ocp.

Getting Help

Both of the authors are moderators at CodeRanch.com, a very large and active programming
forum that is very friendly toward Java beginners. It has a forum just for this exam called
“SCJP/OCPJP.” It also has a forum called “Java in General” for non-exam-specific questions.
As you read the book, feel free to ask your questions in either of those forums. It could be that
you are having trouble compiling a class or that you are just plain confused about something.
You’ll get an answer from a knowledgeable Java programmer. It might even be one of us.

Who Should Buy This Book

If you want to become Oracle Certified Java Programmer, this book is definitely for you. If
you want to acquire a solid foundation in Java, and your goal is to prepare for the exam,
this book is also for you. You’ll find clear explanations of the concepts you need to grasp

http://www.selikoff.net/ocp

Introduction XXV

and plenty of help to achieve the high level of professional competency you need in order to
succeed in your chosen field.

This book is intended to be understandable to anyone who knows basic Java. Since the
exam has a prerequisite of the Associate exam, we assume that you have a good handle on
that much Java. We don’t assume that you know the Java 8—specific parts of the Associate
exam, since some readers are taking the upgrade exam and are new to Java 8.

This book is for anyone from high school students to those beginning their program-
ming journey to experienced professionals who need a review for the certification.

How This Book Is Organized

This book consists of 10 chapters plus supplementary information: a glossary, this intro-
duction, four appendices, and the assessment test after this introduction. You might have
noticed that there are more than 10 exam objectives. We split up what you need to know to
make it easy to learn and remember. Each chapter begins with a list of the objectives that
are covered in that chapter.

Java 8 lambdas and functional programming streams are prevalent throughout the
exam and appear in questions on many topics. You have to know this topic as well
as you knew loops on the OCA exam. We’ve made sure to use them in many chapters
so that you will be ready. For example, Chapter 2 reviews functional interfaces and
Chapter 3 introduces method references. Chapter 4 covers the Streams API in detail.
Later chapters use “the new approach” to writing code often so that you keep using it
and become fluent.

The chapters are organized as follows:

Chapter 1: Advanced Class Design This chapter covers inheritance, including abstract
classes and the final keyword. It also discusses inner classes and enums.

Chapter 2: Design Patterns and Principles This chapter teaches you best practices for
designing and writing applications that lead to code that is easier to understand and more
maintainable.

Chapter 3: Generics and Collections This chapter goes beyond ArrayList and shows
Sets, Maps, and Queues. It also shows new methods in Java 8 on these classes.

Chapter 4: Functional Programming This chapter explains lambdas and stream pipelines
in detail. It also covers the built-in functional interfaces and the Optional class.

Chapter 5: Dates, Strings, and Localization This chapter shows the improved date and
time classes in Java 8. It also covers more advanced String concepts that you need to know
and how to make your application work in multiple languages.

Chapter 6: Exceptions and Assertions This chapter shows more advanced syntax for
exceptions than what appears on the OCA. It also covers how to use assertions to verify the
state of your program.

XXvi Introduction

Chapter 7: Concurrency This chapter introduces the concept of thread management, and
it teaches you how to write multi-threaded programs using the Concurrency APIL.

Chapter 8: IO This chapter introduces you to managing files and directories using the
java.io APL It also instructs you on how to read and write file data using I/O streams.

Chapter 9: NIO.2 This chapter shows you how to manage files and directories using the
newer NIO.2 API. It includes techniques for reading and writing file attributes, as well as
traversing and searching for files using lambdas and streams.

Chapter 10: JDBC This chapter provides the basics of working with databases in Java
including different types of ResultSets.

Appendix A: Answers to Review Questions This appendix lists the answers to the Review
Questions along with explanations.

Appendix B: Study Tips This appendix covers how to approach studying for the exam.

Appendix C: Upgrading from Java 6 or Earlier This appendix covers topics that are on
the upgrade exam for those holding a Java 6 or earlier programmer certification. These
topics are not on the main OCP 8 exam, nor are they on the upgrade exam for holders of
the OCP 7 certification.

At the end of each chapter, you’ll find a few elements that you can use to prepare for the
exam:

Summary This section reviews the most important topics that were covered in the
chapter, and it serves as a good review.

Exam Essentials This section summarizes the main points that were covered in the chap-
ter. You should be able to convey the information requested.

Review Questions Each chapter concludes with at least 20 Review Questions. You
should answer these questions and check your answers against the ones provided after
the questions. If you can’t answer at least 80 percent of these questions correctly, go

back and review the chapter, or at least review those sections that seem to be giving you
difficulty.

/L The Review Questions, Assessment Test, and other testing elements
ING included in this book are not derived from the real exam questions, so

don’t memorize the answers to these questions and assume that doing so
will enable you to pass the exam. You should learn the underlying topic,
as described in the text of the book. This will let you answer the questions
provided with this book and pass the exam. Learning the underlying topic
is also the approach that will serve you best in the workplace—the ultimate
goal of a certification.

To get the most out of this book, you should read each chapter from start to fin-
ish before going to the end-of-chapter elements. They are most useful for checking and

Introduction XXVii

reinforcing your understanding. Even if you’re already familiar with a topic, you should at
least skim the chapter. There are a number of subtleties to Java that you may not encounter
even when working with Java for years.

Interactive Online Learning Environment and Test Bank

The interactive online learning environment that accompanies OCP Oracle Certified
Professional SE 8 Programmer I1: Exam 1Z0-809 provides a test bank with study tools to
help you prepare for the certification exam, and it increases your chances of passing it the
first time! The test bank includes the following:

Sample Tests All of the questions in this book are provided, including the Assessment
Test, which you’ll find at the end of this introduction, and the Chapter Tests, which include
the Review Questions at the end of each chapter. In addition, there are three Practice
Exams—180 questions in total! Use these questions to test your knowledge of the study
guide material. The online test bank runs on multiple devices.

Flashcards Over 250 questions are provided in digital flashcard format (a question fol-
lowed by a single correct answer). You can use the flashcards to reinforce your learning and
provide last-minute test prep before the exam.

Other Study Tools Several bonus study tools are included:

Glossary A glossary of key terms from this book and their definitions is available as a
fully searchable PDF.

Nashorn Materials Early drafts of the exam objectives had Nashorn on the exam for
using JavaScript with Java. Since it isn’t on the exam anymore, this topic isn’t in the
printed book. The appendix is available in the bonus contents in case you want to learn
about this topic, independent of the exam.

Go to http://sybextestbanks.wiley.comto register and gain access to
JTE this interactive online learning environment and test bank with study tools.

Conventions Used in This Book

This book uses certain typographic styles in order to help you quickly identify important
information and to avoid confusion over the meaning of words such as on-screen prompts.
In particular, look for the following styles:

» T[talicized text indicates key terms that are described at length for the first time in a
chapter. (Italics are also used for emphasis.)

= A monospaced font indicates code or command-line text.

= Ttalicized monospaced text indicates a variable.

http://sybextestbanks.wiley.com

xXviii Introduction

In addition to these text conventions, which can apply to individual words or entire
paragraphs, a few conventions highlight segments of text:

)/ A note indicates information that’s useful or interesting. It is often some-
AéTE thing to which you should pay special attention for the exam.
Sidebars

A sidebar is like a note but longer. The information in a sidebar is useful, but it doesn’t fit
into the main flow of the text.

@ Real World Scenario

Real World Scenario

A real world scenario is a type of sidebar that describes a task or an example that’s par-
ticularly grounded in the real world. This is something that is useful in the real world but
is not going to show up on the exam.

OCP Exam Objectives

This book has been written to cover every objective on the OCP 8 exam along with both
upgrade exams.

OCP 8 (120-809)

The following table provides a breakdown of this book’s exam coverage for the OCP 8
(120-809) exam, showing you the chapter where each objective or sub-objective is covered:

Exam Objective Chapter

Java Class Design
Implement encapsulation 2
Implement inheritance including visibility modifiers and composition 1,2

Implement polymorphism 2

Introduction

XXix

Exam Objective

Chapter

Override hashCode, equals, and toString methods from Object class
Create and use singleton classes and immutable classes

Develop code that uses static keyword on initialize blocks, variables, methods,
and classes

Advanced Java Class Design
Develop code that uses abstract classes and methods
Develop code that uses final keyword

Create inner classes including static inner class, local class, nested class, and
anonymous inner class

Use enumerated types including methods and constructors in an enum type

Develop code that declares, implements and/or extends interfaces and use the
@Qverride annotation.

Create and use Lambda expressions

Generics and Collections

Create and use a generic class

Create and use ArraylList, TreeSet, TreeMap, and ArrayDeque objects
Use java.util.Comparator and java.lang.Comparable interfaces
Collections Streams and Filters

Iterate using forEach methods of Streams and List

Describe Stream interface and Stream pipeline

Filter a collection by using lambda expressions

Use method references with Streams

Lambda Built-in Functional Interfaces

Use the built-in interfaces included in the java.util.function package such as
Predicate, Consumer, Function, and Supplier

1,2

2,3

3,4

2,4

XXX Introduction

Exam Objective Chapter
Develop code that uses primitive versions of functional interfaces 4
Develop code that uses binary versions of functional interfaces 4
Develop code that uses the UnaryOperator interface 4
Java Stream API

Develop code to extract data from an object using peek() and map() methods 4
including primitive versions of the map() method

Search for data by using search methods of the Stream classes including 4
findFirst, findAny, anyMatch, allMatch, noneMatch

Develop code that uses the Optional class 4
Develop code that uses Stream data methods and calculation methods 4
Sort a collection using Stream API 4
Save results to a collection using the collect method and group/partition data 4
using the Collectors class

Use of merge() and flatMap() methods of the Stream API 3,4
Exceptions and Assertions

Use try-catch and throw statements 6
Use catch, multi-catch, and finally clauses 6
Use Autoclose resources with a try-with-resources statement 6
Create custom exceptions and AutoCloseable resources 6
Test invariants by using assertions 6
Use Java SE 8 Date/Time API

Create and manage date-based and time-based events including a combination 5
of date and time into a single object using LocalDate, LocalTime, LocalDateTime,
Instant, Period, and Duration

Work with dates and times across time zones and manage changes resulting from 5

daylight savings including Format date and times values

Introduction XXXi
Exam Objective Chapter
Define and create and manage date-based and time-based events using Instant, 5
Period, Duration, and TemporalUnit
Java I/0 Fundamentals
Read and write data from the console 8
Use BufferedReader, BufferedWriter, File, FileReader, FileWriter, FilelInputStream, 8
FileOutputStream, ObjectOutputStream, ObjectinputStream, and PrintWriter in the
java.io package.
Java File 170 (N10.2)
Use Path interface to operate on file and directory paths 9
Use Files class to check, read, delete, copy, move, manage metadata of a file or directory 9
Use Stream APl with NIO.2 9
Java Concurrency
Create worker threads using Runnable, Callable, and use an ExecutorService to 7
concurrently execute tasks
Identify potential threading problems among deadlock, starvation, livelock, and 7
race conditions
Use synchronized keyword and java.util.concurrent.atomic package to control the 7
order of thread execution
Use java.util.concurrent collections and classes including CyclicBarrier and 7
CopyOnWriteArrayList
Use parallel Fork/Join Framework 7
Use parallel Streams including reduction, decomposition, merging processes, 7
pipelines and performance.
Building Database Applications with JDBC
Describe the interfaces that make up the core of the JDBC APl including the Driver, 10
Connection, Statement, and ResultSet interfaces and their relationship to provider
implementations
Identify the components required to connect to a database using the 10

DriverManager class (including the JDBC URL)

XXXii Introduction

Exam Objective Chapter
Submit queries and read results from the database (including creating statements, 10
returning result sets, iterating through the results, and properly closing result sets,
statements, and connections)

Localization

Read and set the locale by using the Locale object 5
Create and read a Properties file 5

Build a resource bundle for each locale and load a resource bundle in an application 5

Upgrade from Java 7 (120-810)

This table shows the chapter where each objective or sub-objective is covered for the

upgrade exam from Java 7 to Java 8 OCP (120-810):

Exam Objective

Chapter

Lambda Expressions

Describe and develop code that uses Java inner classes, including nested class,
static class, local class, and anonymous classes

Describe and write functional interfaces

Describe a lambda expression; refactor the code that uses an anonymous inner
class to use a lambda expression; describe type inference and target typing

Using Built-in Lambda Types

Describe the interfaces of the java.util.function package
Develop code that uses the Function interface

Develop code that uses the Consumer interface
Develop code that uses the Supplier interface

Develop code that uses the UnaryOperator interface

Develop code that uses the Predicate interface

Introduction xxxiii
Exam Objective Chapter
Develop code that uses the primitive and binary variations of the base interfaces 4
of the java.util.function package
Develop code that uses a method reference, including refactoring a lambda 3,4
expression to a method reference
Filtering Collections with Lambdas
Develop code that iterates a collection by using the forEach() method and 3
method chaining
Describe the Stream interface and pipelines 4
Filter a collection by using lambda expressions 3
Identify the lambda operations that are lazy 4
Collection Operations with Lambda
Develop code to extract data from an object by using the map() method 3
Search for data by using methods such as findFirst(), findAny(), anyMatch(), 4
allMatch(), and noneMatch()
Describe the unique characteristics of the Optional class 4
Perform calculations by using Java Stream methods, such as count(), max(), 4
min(), average(), and sum()
Sort a collection by using lambda expressions 4
Develop code that uses the Stream.collect() method and Collectors class methods, 4
such as averagingDouble(), groupingBy(), joining(), and partitioningBy()
Parallel Streams
Develop code that uses parallel streams 7
Implement decomposition and reduction in streams 4,7
Lambda Cookbook
Develop code that uses Java SE 8 collection improvements, including 3

Collection.removelf(), List.replaceAll(), Map.computelfAbsent(), and Map.
computelfPresent() methods

XXXiV Introduction

Exam Objective Chapter

Develop code that uses Java SE 8 I/0 improvements, including Files.find(), Files. 9
walk(), and lines() methods

Use the merge() and flatMap() methods 3.4

Develop code that creates a stream by using the Arrays.stream() and IntStream.
range() methods

Method Enhancements
Add static methods to interfaces 2

Define and use a default method of an interface and describe the inheritance 2
rules for the default method

Use Java SE 8 Date/Time API

Create and manage date- and time-based events, including a combination of 5
date and time in a single object, by using LocalDate, LocalTime, LocalDateTime,
Instant, Period, and Duration

Work with dates and times across time zones and manage changes resulting 5
from daylight savings, including Format date and times values

Define, create, and manage date- and time-based events using Instant, Period, 5
Duration, and TemporalUnit

Upgrade from Java 6 or lower (1Z20-813)

If you are studying for the 1Z20-813 exam, you must read Appendix C. It covers topics that
are on your exam but not the other exams covered by the book.

This table shows the chapter where each objective or sub-objective is covered for the
upgrade exam from a Java 6 or lower certification to Java 8 OCP (120-813).

Exam Objective Chapter

Language Enhancements

Develop code that uses String objects in the switch statement, binary Appendix C
literals, and numeric literals, including underscores in literals

Develop code that uses try-with-resources statements, including using 6
classes that implement the AutoCloseable interface

Introduction XXXV

Exam Objective Chapter
Develop code that handles multiple Exception types in a single catch block 6

Use static and default methods of an interface including inheritance rules 2

for a default method

Concurrency

Use collections from the java.util.concurrent package with a focus onthe 7
advantages over and differences from the traditional java.util collections

Use Lock, ReadWriteLock, and ReentrantLock classes in the java.util. Appendix C
concurrent.locks and java.util.concurrent.atomic packages to support

lock-free thread-safe programming on single variables

Use Executor, ExecutorService, Executors, Callable, and Future to execute 7

tasks using thread pools

Use the parallel Fork/Join Framework 7
Localization

Describe the advantages of localizing an application and developing code 5

that defines, reads, and sets the locale with a Locale object

Build a resource bundle for a locale and call a resource bundle from an 5
application

Create and manage date- and time-based events by using LocalDate, 5
LocalTime, LocalDateTime, Instant, Period, and Duration, including a

combination of date and time in a single object

Format dates, numbers, and currency values for localization with the 5, Appendix C
NumberFormat and DateFormat classes, including number and date

format patterns

Work with dates and times across time zones and manage changes 5

resulting from daylight savings

Java File 170 (NI0.2)

Operate on file and directory paths by using the Path class 9

Check, delete, copy, or move a file or directory by using the Files class 9
Recursively access a directory tree by using the DirectoryStream and Appendix C

FileVisitor interfaces

XXXVi Introduction

Exam Objective

Chapter

Find a file by using the PathMatcher interface, and use Java SE 8 I/0
improvements, including Files.find(), Files.walk(), and lines() methods

Observe the changes in a directory by using the WatchService interface
Lambda

Define and write functional interfaces and describe the interfaces of the
java.util.function package

Describe a lambda expression; refactor the code that uses an anonymous
inner class to use a lambda expression; describe type inference and target

typing

Develop code that uses the built-in interfaces included in the java.util.
function package, such as Function, Consumer, Supplier, UnaryOperator,
Predicate, and Optional APls, including the primitive and binary variations
of the interfaces

Develop code that uses a method reference, including refactoring a
lambda expression to a method reference

Java Collections
Develop code that uses diamond with generic declarations

Develop code that iterates a collection, filters a collection, and sorts a
collection by using lambda expressions

Search for data by using methods, such as findFirst(), findAny(), any-
Match(), allMatch(), and noneMatch()

Perform calculations on Java Streams by using count, max, min, average,
and sum methods and save results to a collection by using the collect
method and Collector class, including the averagingDouble, groupingBy,
joining, partitioningBy methods

Develop code that uses Java SE 8 collection improvements, including the
Collection.removelf(), List.replaceAll(), Map.computelfAbsent(), and
Map.computelfPresent() methods

Develop code that uses the merge(), flatMap(), and map() methods on Java
Streams

9

Appendix C

3,4

3,4

Appendix C

3

Introduction

XXXVii

Exam Objective Chapter

Java Streams

Describe the Stream interface and pipelines; create a stream by using 4
the Arrays.stream() and IntStream.range() methods; identify the lambda
operations that are lazy

Develop code that uses parallel streams, including decomposition opera- 7
tion and reduction operation in streams

xxXxviii Assessment Test

Assessment Test

1. What is the result of executing the following application? (Choose all that apply.)

import java.util.concurrent.*;
import java.util.stream.*;
public class BabyPandaBathManager {
public static void await(CyclicBarrier ch) {
try {
cb.await();
} catch (InterruptedException | BrokenBarrierException e) {
// Handle exception

}
public static void main(String[] args) {

final CyclicBarrier cb = new CyclicBarrier(3,()-> System.out.
println("Clean!"));// ul

ExecutorService service = Executors.newScheduledThreadPool(2);
IntStream.iterate(1l, i-> 1) // u2
Limit(12)
.forEach(i-> service.submit(// u3
()-> await(cbh))); // u4
service.shutdown();

—

It outputs Clean! at least once.

It outputs Clean! four times.

The code will not compile because of line ul.
The code will not compile because of line u2.
The code will not compile because of line u3.
The code will not compile because of line u4.

It compiles but throws an exception at runtime.

IOomMmMOO®mP

It compiles but waits forever at runtime.
2. What is the result of the following program?
1 public abstract class Message {
2: public String recipient;
3 public abstract final void sendMessage();
4 public static void main(String[] args) {

Mmoo W >

Assessment Test XXXiX

Message m = new TextMessage();
m.recipient = "1234567890";
m.sendMessage() ;
}
static class TextMessage extends Message {
public final void sendMessage() {
System.out.println("Text message to " + recipient);

} 1}

Text message to null.

Text message to 1234567890.

A compiler error occurs on line 1.

A compiler error occurs on line 3.

A compiler error occurs on line 7.

A compiler error occurs on another line.

What is the result of executing the following code? (Choose all that apply.)

1
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

}

: import java.io.*;
: public class Tail {}
: public class Bird implements Serializable {

private String name;
private transient int age;
private Tail tail;

public String getName() { return name; }

public Tail getTail() { return tail; }

public void setName(String name) { this.name = name; }
public void setTail(Tail tail) { this.tail = tail; }
public int getAge() { return age; }

public void setAge(int age) { this.age = age; }

public void main(String[] args) {
try(InputStream is = new ObjectInputStream(
new BufferedInputStream(new FileInputStream("birds.dat")))) {
Bird bird = is.readObject();

x|

Assessment Test

It compiles and runs without issue.

The code will not compile because of line 3.

The code will not compile because of line 5.

The code will not compile because of lines 16-17.

The code will not compile because of line 18.

Mmoo ®w >

It compiles but throws an exception at runtime.

What is the result of the following class?

1 public class Box<T> {

2 T value;

3

4 public Box (T value) {

5: this.value = value;

6 }

7 public T getValue() {

8 return value;

9: }

10: public static void main(String[] args) {
11: Box<String> one = new Box<String>("a string");
12: Box<Integer> two = new Box<>(123);
13: System.out.print(one.getValue());

14: System.out.print(two.getValue());

15: 1}

Compiler error on line 1.
Compiler error on line 2.
Compiler error on line 11.
Compiler error on line 12.

a stringl23

mmo o ® >

An exception is thrown.
What is the result of executing the following code snippet?

List<Integer> source = new ArraylList<>(Arrays.asList(1,2,3,4));
List<Integer> fish = new CopyOnWriteArraylList<>(source);
List<Integer> mammals = Collections.synchronizedList(source);
Set<Integer> birds = new ConcurrentSkipListSet<>();
birds.addAll(source);

synchronized(new Integer(10)) {
for (Integer f: fish) fish.add(4); // cl

-

IomMmMmOO®mP

Assessment Test xli

for(Integer m: mammals) mammals.add(4); // c2
for (Integer b: birds) birds.add(5); // c3
System.out.println(fish.size()+" "+mammals.size()+" "+birds.size());

It outputs 4 8 5.

It outputs 8 4 5.

It outputs 8 8 8.

The code does not compile.

It compiles but throws an exception at runtime on line c1.
It compiles but throws an exception at runtime on line c2.
It compiles but throws an exception at runtime on line c3.

It compiles but enters an infinite loop at runtime.

What changes would need to be made to make the following immutable object pattern cor-
rect? (Choose all that apply.)

import java.util.List;

public class Duck {

—

moowm»

m

private String name;
private List<Duck> ducklings;
public Duck(String name, List<Duck> ducklings) {
this.name = name;
this.ducklings = new ArrayList<Duck>(ducklings);
}
public String getName() { return name; }
public List<Duck> getDucklings() { return ducklings; }
public String hasDucklings(Predicate<Duck> p) {
return p.test(this) ? "Quack Quack": "";

None, the immutable object pattern is properly implemented.
Mark name and ducklings final.

Mark the Duck class final.

Have Duck implement the Immutable interface.

Remove the hasDucklings () method since any lambda expressions passed to it could
modify the Duck object.

Replace the getDucklings () with a method (or methods) that do not give the caller
direct access to the List<Duck> ducklings.

Change the type of List<Duck> to be List<Object>.

xlii Assessment Test

7. Assuming the current directory /bats/day and all of the files and directories referenced
here exist and are available within the file system, what is the result of executing the follow-
ing code?

Path pathl = Paths.get("/bats/night","../").resolve(Paths.get(
"./sleep.txt")).normalize();

Path path2 = new File("../sleep.txt").toPath().toRealPath();

System.out.print(Files.isSameFile(pathl,path2));
System.out.print(" "+pathl.equals(path2));

The code does not compile.

A. true true
B. false false
C. true false
D. false true
E.

F.

The code compiles but throws an exception at runtime.
8. What statements are true about the following code? (Choose all that apply.)

public class Tail {}
public class Animal {
public String name;

3
public class Canine extends Animal {
public Tail tail;

}
public class Wolf extends Canine {}

Wolf has-a name.
Wolf has-a Tail.
Wolf is-a Tail.

Wolf is-a Animal.

Canine is-a Wolf.

mmo o ® >

Animal has-a Tail.
9. Which of the following can fill in the blank? (Choose all that apply.)

public void stmt(Connection conn, int a) throws SQLException {
Statement stmt = conn.createStatement(a,)

}

A. ResultSet.CONCUR_READ_ONLY
B. ResultSet.CONCUR_INSERTABLE

10.

1.

12.

C.
D.
E
E

Which of the following statements is true when the code is run with java AssertDemo?

mmo o ® >

1
2
3
4:
5
6
7
8

Assessment Test

ResultSet.CONCUR_UPDATABLE
ResultSet.TYPE_FORWARD_ONLY
ResultSet.TYPE_SCROLL_INSENSITIVE
ResultSet.TYPE_SCROLL_SENSITIVE

public class AssertDemo {
public static void main(String [] args) {
Integer x = 10;
X++3

assert x == null && x >= 0;
System.out.println(x);

}

Line 3 generates a compiler error.

Line 4 generates a compiler error.

Line 5 generates a compiler error.

Line 5 throws an AssertionError at runtime.
The output is 10.

The output is 11.

Which of the following are true? (Choose all that apply.)

private static void magic(Stream<Integer> s) {

—

mmo o ®w >

G.

Optional o = s.filter(x -> x < 5).limit(3).max((x, y) -> x=y);
System.out.println(o.get());

magic(Stream.empty()); runs infinitely.
magic(Stream.empty()); throws an exception.
magic(Stream.iterate(l, x ->> x++)); runs infinitely.
magic(Stream.iterate(l, x ->> x++)); throws an exception.
magic(Stream.of (5, 10)); runs infinitely.
magic(Stream.of (5, 10)); throws an exception.

The method does not compile.

xliii

Suppose that we have the following property files and code. Which bundle is used on lines
7 and 8, respectively?

Dolphins.properties
name=The Dolphin

xliv

13.

14.

Assessment Test
age=0
Dolphins_fr.properties
name=Dolly
Dolphins_fr_CA.properties
name=Dolly
age=4
5: Locale fr = new Locale("fr");
6: ResourceBundle b = ResourceBundle.getBundle("Dolphins", fr);
7: b.getString("name");
8: b.getString("age");
A. Dolphins.properties and Dolphins.properties
B. Dolphins.properties and Dolphins_fr.properties
C. Dolphins_fr.properties and Dolphins_fr.properties
D. Dolphins_fr.properties and Dolphins.properties
E. Dolphins_fr.properties and Dolphins_fr_CA.properties
F. Dolphins_fr_CA.properties and Dolphins_fr.properties
What is the result of executing the following code? (Choose all that apply.)

String line;

Console ¢ = System.console();

if ((line = c.readLine()) != null)
System.out.println(line);

The code runs without error but prints nothing

The code prints what was entered by the user.

An ArrayIndexOutOfBoundsException might be thrown.
A NullPointerException might be thrown.

An IOException might be thrown.

Mmoo w >

The code does not compile.
How many compilation issues are in the following code?
public class Compiles {

class RainException extends Exception {}

1
2
3:
4 public static void main(String[] args) {
5

try(Scanner s = new Scanner("rain"); String line = "";) {

6:

T:

8:

9:
10: }
A. 0
B. 1
C. 2
D. 3
E. 4
F. §

Assessment Test

if (s.nextLine().equals("rain"))
throw new RainException();
} finally {
s.close();

I

15. What is the result of the following code?

public class VisitPark {

1
2
3
4: }
5
6
7
8

}

enum AnimalsInPark {

SQUIRREL, CHIPMUNK, SPARROW;

public static void main(String[] args) {

AnimalsInPark[] animals = AnimalsInPark.values();
System.out.println(animals[1]);
}

CHIPMUNK
SQUIRREL

A compiler error occurs on line 2.

A
B
C. The code compiles, but the output is indeterminate.
D
E

A compiler error occurs on line 6.

F. A compiler error occurs on line 7.

16. Which of the answer choices is printed out by the following code?

String d =
String p =

boolean bl
boolean b2

System.out.

Duration.ofDays(1).toString();
Period.ofDays(1).toString();

:d::p;
= d.equals(p);
println(bl + " " + b2);

A. false false
B. false true

xlv

xlvi

17.

18.

Assessment Test

true false
true true

The code does not compile.

mmoo

A runtime exception is thrown.

Assuming that the directory /gorilla exists within the file system with the numerous files
including signed-words. txt, what is the result of executing the following code? (Choose
all that apply.)

Path path = Paths.get("/gorilla/signed-words.txt");

Files.find(path.getParent(),10.0, // k1
(Path p) -> p.toString().endsWith(".txt") && Files.isDirectory(p)) // k2
.collect(Collectors.toList())
.forEach(System.out::println);

Files.readAllLines(path) // k3
.flatMap(p -> Stream.of(p.split(" "))) // k4
.map(s -> s.toLowerCase()) // k5
.forEach(System.out::println);

The code compiles but does not produce any output at runtime.
It does not compile because of line k1.
It does not compile because of line k2.
It does not compile because of line k3.
It does not compile because of line k4.

The code prints all of the . txt files in the directory tree.

ePmMmoOoO® >

The code prints all of the words in the signed-words. txt file, each on a different line.

Which of the following statements can fill in the blank to make the code compile success-
fully? (Choose all that apply.)

Set<? extends RuntimeException> set =

A. new HashSet<? extends RuntimeException>();
B. new HashSet<Exception>();

C. new TreeSet<RuntimeException>();

D. new TreeSet<NullPointerException>();

E

None of the above

19.

20.

Assessment Test xlvii

Which of the following position a ResultSet cursor to a location immediately before the
first row? (Choose all that apply.)

A. rs.absolute(-1)
B. rs.absolute(0)
C. rs.absolute(1)
D. rs.beforeFirst()
E. rs.first()

F

rs.next()
Assume that today is June 1, 2016. What is the result of the following?

Stream<LocalDate> s = Stream.of(LocalDate.now());
UnaryOperator<LocalDate> u = 1 -> 1;
s.filter(l -> 1 != null).map(u).peek(System.out::println);

A. 2016-05-01

B. 2016-06-01

There is no output.

The output is something other than 2016-05-01 or 2016-06-01.

The code does not compile.

mmoow

An exception is thrown.

xlviii Answers to Assessment Test

Answers to Assessment Test

1. H. The code compiles without issue, so C, D, E, and F are incorrect. The key to under-
standing this code is to notice that our thread pool size is only 2, but our CyclicBarrier
limit is 3. Even though 12 tasks are all successfully submitted to the thread executor service
by way of the stream forEach () method, the first two tasks will use up both available
threads and wait indefinitely. Since a third await() is never executed, the barrier is never
broken and the program hangs, making H the only correct answer. Nothing is ever out-
putted nor is any exception thrown, so A, B, and G are incorrect. See Chapter 7 for more
information.

2. D. The code does not compile because a method is not allowed to be both abstract and
final. If final were removed, the answer would be B. An abstract class may contain an
abstract method. A static nested class may extend other classes. For more information,
see Chapter 1.

3. D, E. The code does not compile due to a number of issues, so A and F are incorrect.
First off, the readObject () method is not available to the InputStream class, and since
the ObjectInputStream has been upcast to InputStream, the code will not compile
due to line 18, so E is correct. Line 18 will also not compile because the return type
of readObject() is of type Object and must be cast explicitly to Bird in order to be
assigned to the Bird reference. Furthermore, constructors and methods on lines 16, 17,
and 18 throw checked I0Exceptions that must be caught, so D is also correct. Note that
line 18 also throws ClassNotFoundException. Lines 3 and 5 compile without issue,
so B and C are incorrect. It should be noted that even if the compilation problems were
resolved, the code would still throw an exception at runtime since the Bird class includes
a Tail reference as a member, and the Tai1l class does not implement Serializable. For
more information, see Chapter 8.

4. E. This class is a proper use of generics. Box uses a generic type named T. On line 11, the
generic type is String. On line 12 the generic type is Integer. Line 12 also uses the dia-
mond operator. See Chapter 3 for more information.

5. F. The code compiles without issue, so D is incorrect. The code throws a
ConcurrentModificationException at runtime on line c2, because mammals is a synchro-
nized list and not a concurrent one. Therefore, it is not safe to be used inside an iterator,
and F is the correct answer. Note that if line c2 were removed, the rest of the code would
run without throwing an exception, outputting 8 4 5. See Chapter 7 for more information.

6. B, C,F. Aisincorrect, since there are definitely some problems with the immutable objects
implementation. B is correct, because all instance variables should be marked final
and private for the class to be considered immutable. C is correct, because it prevents
the methods from being overridden. D is incorrect, since there is no such thing as the
Immutable interface defined in the Java APL. E is also incorrect, because any passed lambda
expression would have access to only the public methods of the class. F is correct, because
the mutable object ducklings should not be exposed directly, since this allows the user to
modify it. G is incorrect, because this has nothing to do with immutability. For more infor-
mation, see Chapter 2.

7.

10.

11.

12.

13.

14.

15.

16

Answers to Assessment Test xlix

A. The code compiles and runs without issue, so E and F are incorrect. For this question,

it helps if you resolve each path to a simplified form component before answering it. The
pathl variable simplifies to /bats/sleep.txt after the Path operations have been applied.
The path2 variable using the current directory of /bats/day is assigned a path value of /
bats/sleep.txt. Since the file Path objects represent the same path within the file system,
they will return true for both equals() and isSameFile(), so A is the correct answer and
B, C, and D are incorrect. For more information, see Chapter 9.

A, B, D. A is correct because name is public and therefore inherited by the Wolf class. B is
correct because Wolf is-a Canine and Canine has-a Tail; therefore, since tailis public, it
is inherited and Wolf has-a Tail. C is incorrect, because Wo'lf is not inherited from Tail. D
is correct, because Wolf is-a Canine and Canine is-a Animal; therefore, Wolf is-a Animal. E
is incorrect, because the relationship is reversed. F is incorrect, since Animal does not have a
Tail attribute. For more information, see Chapter 2.

A, C. The first parameter is the ResultSet type. The second parameter is the ResultSet
concurrency mode. Choices D, E, and F are incorrect because they represent the first
parameter. Choice B is incorrect because it is not a constant in JDBC. Choices A and C are
correct. For more information, see Chapter 10.

F. The code compiles due to autoboxing. The command line does not enable assertions, so
D cannot happen. Line 6 executes and prints out 11, so the answer is F. For more informa-
tion, see Chapter 6.

B, F. Calling get() on an empty Optional causes an exception to be thrown, making
options B and F correct. Option C is incorrect because the infinite stream is made finite
by the intermediate 1imit() operation. Options A and E are incorrect because the source
streams are not infinite. Therefore, the call to max () sees only three elements and termi-
nates. For more information, see Chapter 4.

D. Java will use Dolphins_fr.properties as the matching resource bundle on line 6
because it is an exact match on the language. Line 7 finds a matching key in this file. Line 8
does not find a match in that file, and therefore it has to look higher up in the hierarchy. For
more information, see Chapter 5.

B, D. Option B is correct because this is the right way to read data from the Console.
Option D is also correct. If there is no console available, a NullPointerException is

thrown. The read method does not throw an I0Exception. For more information, see
Chapter 8.

D. Line 5 is incorrect because String does not implement AutoCloseable. Not all
objects can be declared in a try-with-resources try clause. Line 7 is incorrect because
RainException is a checked exception and is not declared or handled. Line 9 is incorrect
because s is declared in the try clause and is therefore out of scope for the finally block.

A. The code compiles. An enum may be an inner class. The values() method returns an
array with the enum values in the order in which they were declared in the code. Since Java
uses 0-based indexes, the answer is A. For more information, see Chapter 1.

A. disthe String P1D and p is the String PT24H. They are neither the same object nor

17.

18.

19.

20.

Answers to Assessment Test

the same value. Remember that Duration uses hours/minutes/seconds and Period uses
years/months/days for measures. For more information, see Chapter 5.

B, C, E. Numerous lines would have to be corrected for the code to compile, so A, F, and G
are incorrect. First off, the second parameter to Files.find() is the depth limit and must
be an int, so line k1 would have to be changed to make the code compile, and B is correct.
Next, the Files.find() method uses a BiPredictate<Path,BasicFileAttribute>, not
a Predicate<Path>, for its lambda expression, so line k2 would also need to be changed to
allow the code to compile, and C is also correct. Finally, Files.readAllLines() returns

a List<String>, not a stream, so the following line, k4, which applies flatMap(), would
also prevent the code from compiling, and E is correct. D is incorrect, since line k3 by itself
does not cause any compilation issues. For more information, see Chapter 9.

C, D. Set defines an upper bound of type RuntimeException. This means that classes may
specify RuntimeException or any subclass of RuntimeException as the type parameter.
Choice A is incorrect because the wildcard cannot occur on the right side of the assignment.
See Chapter 3 for more information.

B, D. On a scrollable ResultSet, the absolute() method positions the cursor. -1 means
the last row. 1 means the first row. @ means before the first row. Therefore, choice B is cor-
rect. There is also a method beforeFirst() that is equivalent, making choice D correct as
well. For more information, see Chapter 10.

C. There is no terminal operation. Since the intermediate operations use lazy evaluation,
they wait for a terminal operation to run. Since there is no terminal operation, peek ()
never runs. For more information, see Chapter 4.

Advanced Class
Design

THE OCP EXAM TOPICS COVERED IN THIS
CHAPTER INCLUDE THE FOLLOWING:

v Java Class Design

= Implement inheritance including visibility modifiers and
composition

= Implement polymorphism

= Override hashCode, equals, and toString methods from
Object class

= Develop code that uses the static keyword on initialize
blocks, variables, methods, and classes

v Advanced Java Class Design
= Develop code that uses abstract classes and methods
= Develop code that uses final keyword

= Create inner classes including static inner class, local class,
nested class, and anonymous inner class

= Use enumerated types including methods, and constructors
in an enum type

= Develop code that declares, implements, and/or extends
interface and use the @Override annotation

Congratulations! If you are reading this, you’ve probably
passed the Java Programmer I OCA (Oracle Certified

7% Associate) exam, and you are now ready to start your journey
through the Java Programmer IT OCP (Oracle Certified Professional) exam. Or perhaps you

came here from an older version of the certification and are now upgrading.

The OCP builds upon the OCA. You are expected to know the material on the OCA
when taking the OCP. Some objectives on the OCP are the same as those on the OCA, such
as those concerning access modifiers, overloading, overriding, abstract classes, static,
and final. Most are implied. For example, the OCP objectives don’t mention 1 f statements
and loops. Clearly, you still need to know these. We will also point out differences in Java 8
to help those of you coming in from an older version of Java.

If you didn’t score well on the OCA exam, or if it has been a while since you took it,
we recommend reviewing the book you used to study for it. The OCP questions are a lot
tougher. You really need to know the fundamentals well. If you’ve misplaced your review
materials, feel free to check out our OCA book, OCA: Oracle Certified Associate Java SE
8 Programmer I Study Guide (Sybex, 2014).

This chapter includes a brief review of overlapping topics and then moves on to new
material. You’ll see how to use instanceof, implement equals/hashCode/toString, create
enumerations, and create nested classes.

Reviewing OCA Concepts

In this section, we review the OCA objectives that are explicitly listed as being on the
OCP. Since this is review, we will ask you questions followed by a brief reminder of the key
points. These questions are harder than the ones on the OCA because they require you to
reflect on a lot of what you learned at the same time.

Access Modifiers

First up on the review are the access modifiers public, protected, and private and default
access. Imagine the following method exists. For now, just remember the instance variables
it tries to access:

public static void main(String[] args) {
BigCat cat = new BigCat();
System.out.println(cat.name);

Reviewing OCA Concepts 3

System.out.println(cat.hasFur);
System.out.println(cat.hasPaws);
System.out.println(cat.id);

Now, suppose each of these classes has this main method that instantiates a BigCat and
tries to print out all four variables. Which variables will be allowed in each case?

package cat;

public class BigCat {
public String name = "cat";
protected boolean hasFur = true;
boolean hasPaws = true;
private int id;

package cat.species;
public class Lynx extends BigCat { }

package cat;
public class CatAdmirer { }

package mouse;
public class Mouse { }

Think about it for a minute—no really. Pause and try to answer. Ready now? While this
code compiles for BigCat, it doesn’t in all of the classes.

The line with cat.name compiles in all four classes because any code can access public
members. The line with cat.id compiles only in BigCat because only code in the same
class can access private members. The line with cat.hasPaws compiles only in BigCat
and CatAdmirer because only code in the same package can access code with default
access.

Finally, the line with cat.hasFur also compiles only in BigCat and CatAdmirer. pro-
tected allows subclasses and code in the same package to access members. Lynx is a tricky
one. Since the code is being accessed via the variable rather than by inheritance, it does not
benefit from protected. However, if the code in main was Lynx cat = new Lynx();, Lynx
would be able to access cat.hasFur using protected access because it would be seen as a
subclass.

Remember that there was a default keyword introduced in Java 8 for
TE interfaces. That keyword is not an access modifier.

4 Chapter 1 = Advanced Class Design

To review the rules for access modifiers at a glance, see Table 1.1.

TABLE 1.1 Access modifiers

If that member

has default

If that member (package private) If that member If that member

Can access is private? access? is protected? is public?
Member in the yes yes yes yes
same class
Member in no yes yes yes
another class in
the same package
Member in a no no yes yes
superclassin a
different package
Method/field in a no no no yes

class (that is not
a superclass) in a
different package

Overloading and Overriding

Next we review the differences between overloading and overriding. Which method(s) in
BobcatKitten overload or override the one in Bobcat?

1: public class Bobcat {

2: public void findDen() { }

3: }

1: public class BobcatKitten extends Bobcat {

2: public void findDen() { }

3: public void findDen(boolean b) { }

4 public int findden() throws Exception { return 0; }
5: }

The one on line 2 is an override because it has the same method signature. The one on
line 3 is an overloaded method because it has the same method name but a different param-
eter list. The one on line 4 is not an override or overload because it has a different method
name. Remember that Java is case sensitive.

To review, overloading and overriding happen only when the method name is the same.
Further, overriding occurs only when the method signature is the same. The method

Reviewing OCA Concepts

signature is the method name and the parameter list. For overloading, the method
parameters must vary by type and/or number.

When multiple overloaded methods are present, Java looks for the closest match first. It
tries to find the following:

= Exact match by type

= Matching a superclass type

= Converting to a larger primitive type
= Converting to an autoboxed type

= Varargs

For overriding, the overridden method has a few rules:
= The access modifier must be the same or more accessible.

= The return type must be the same or a more restrictive type, also known as covariant
return types.

= If any checked exceptions are thrown, only the same exceptions or subclasses of those
exceptions are allowed to be thrown.

The methods must not be static. (If they are, the method is hidden and not
overridden.)

Abstract Classes

Now we move on to reviewing abstract classes and methods. What are three ways that
you can fill in the blank to make this code compile? Try to think of ways that use the
clean() method rather than just putting a comment there.

abstract class Cat {

}

class Lion extends Cat {
void clean() {}

Did you get three? One of them is a little tricky. The tricky one is that you could leave it
blank. An abstract class is not required to have any methods in it, let alone any abstract
ones. A second answer is the one that you probably thought of right away:

abstract void clean();

This one is the actual abstract method. It has the abstract keyword and a semicolon
instead of a method body. A third answer is a default implementation:

void clean () {}

5

6 Chapter 1 = Advanced Class Design

An abstract class may contain any number of methods including zero. The methods can
be abstract or concrete. Abstract methods may not appear in a class that is not abstract.
The first concrete subclass of an abstract class is required to implement all abstract
methods that were not implemented by a superclass.

Notice that we said three ways. There are plenty of other ways. For example, you could
have the clean() method throw a RuntimeException.

Static and Final

Next on the review list are the static and final modifiers. To which lines in the follow-
ing code could you independently add static and/or final without introducing a compiler
error?

abstract class Cat {
String name = "The Cat";
void clean() { }

}

class Lion extends Cat {
void clean() { }

~N o b~ W N

}

Both static and final can be added to line 2. This allows the variable to be accessed
as Cat.name and prevents it from being changed. static cannot be added to line 3 or 6
independently because the subclass overrides it. It could be added to both, but then you
wouldn’t be inheriting the method. The final keyword cannot be added to line 3 because
the subclass method would no longer be able to override it. final can be added to line 6
since there are no subclasses of Lion.

To review, final prevents a variable from changing or a method from being overridden.
static makes a variable shared at the class level and uses the class name to refer to a
method.

static and final are allowed to be added on the class level too. You will see static
classes in the section on nested classes at the end of this chapter, so don’t worry if you didn’t
pick up on those. Using final on a class means that it cannot be subclassed. As with meth-
ods, a class cannot be both abstract and final. In the Java core classes, String is final.

Imports

Oracle no longer lists packages and imports in the objectives for the OCP 8 exam. They do
include visibility modifiers, which means that you still need to understand packages and
imports. So let’s review. How many different ways can you think of to write imports that
will make this code compile?

public class ListHelper {
public List <String> copyAndSortList(List <String> original) {

Using instanceof 17

List <String> 1list = new ArraylList <String>(original);
sort(list);
return list;

The key is to note that this question really has two parts. One thing to figure out is how
to get sort(list) to compile. Since sort() is a static method on Collections, you defi-
nitely need a static import. Either of these will do it:

import static java.util.Collections.sort;
import static java.util.Collections.*;

The other part of the question is to note that List and ArrayList are both
referenced. These are regular classes and need regular imports. One option is to use a
wildcard:

import java.util.*;
The other option is to list them out:

import java.util.List;
import java.util.Arraylist;

There are other imports you can add, but they have redundancy or are unnecessary.
For example, you could import java.lang.*. However, this package is always imported
whether you specify it or not.

Using instanceof

Now we move on to the new topics. On the OCA, you learned about many operators
including < and ==. Now it is time to learn another: instanceof.

In a instanceof B, the expression returns true if the reference to which a points is an
instance of class B, a subclass of B (directly or indirectly), or a class that implements the B
interface (directly or indirectly).

Let’s see how this works. You have three classes with which to work:

class HeavyAnimal { }
class Hippo extends HeavyAnimal { }
class Elephant extends HeavyAnimal { }

You see that Hippo is a subclass of HeavyAnimal but not Elephant. Remember that the
exam starts with line numbers other than 1 when showing a code snippet. This is to tell
you that you can assume the correct code comes before what you see. You can assume any
missing code is correct and all imports are present.

8 Chapter 1 = Advanced Class Design

12: HeavyAnimal hippo = new Hippo();

13: boolean bl = hippo instanceof Hippo; // true
14: boolean b2 = hippo instanceof HeavyAnimal; // true
15: boolean b3 = hippo instanceof Elephant; // false

On line 13, you see that hippo is an instance of itself. We’d certainly hope so! Line
14 returns true because hippo is an instance of its superclass. Line 15 returns false
because hippo is not an Elephant. The variable reference is HeavyAnimal, so there could
be an Elephant in there. At runtime, Java knows that the variable is in fact pointing to
a Hippo.

All Java classes inherit from Object, which means that x instanceof Object is usually
true, except for one case where it is false. If the literal null or a variable reference pointing
to null is used to check instanceof, the result is false. null is not an Object. For example:

26: HeavyAnimal hippo = new Hippo();

27: boolean b4 = hippo instanceof Object; // true
28: Hippo nullHippo = null;

29: boolean b5 = nullHippo instanceof Object; // false

Line 27 returns true because Hippo extends from Object indirectly as do all classes.
Line 29 returns false because the nullHippo variable reference points to null and null is
not a Hippo. This next one is interesting:

30: Hippo anotherHippo = new Hippo();
31: boolean b5 = anotherHippo instanceof Elephant; // DOES NOT COMPILE

Line 31 is a tricky one. The compiler knows that there is no possible way for a Hippo
variable reference to be an Elephant, since Hippo doesn’t extend Elephant directly or
indirectly.

The compilation check only applies when instanceof is called on a class. When check-
ing whether an object is an instanceof an interface, Java waits until runtime to do the
check. The reason is that a subclass could implement that interface and the compiler
wouldn’t know it. There is no way for Hippo to be a subclass of Elephant.

For example, suppose that you have an interface Mother and Hippo does not implement it:

public interface Mother {}
class Hippo extends HeavyAnimal { }

This code compiles:

42: HeavyAnimal hippo = new Hippo();
43: boolean b6 = hippo instanceof Mother;

It so happens that Hippo does not implement Mother. The compiler allows the statement
because there could later be a class such as this:

class MotherHippo extends Hippo implements Mother { }

Understanding Virtual Method Invocation 9

The compiler knows an interface could be added, so the instanceof statement could be
true for some subclasses, whereas there is no possible way to turn a Hippo into an Elephant.

The instanceof operator is commonly used to determine if an instance is a subclass of
a particular object before applying an explicit cast. For example, consider a method that
takes as input an Animal reference and performs an operation based on that animal’s type:

public void feedAnimal(Animal animal) {
if(animal instanceof Cow) {
((Cow)animal).addHay();
} else if(animal instanceof Bird) {
((Bird)animal) .addSeed();
} else if(animal instanceof Lion) {
((Lion)animal) .addMeat();
} else {
throw new RuntimeException("Unsupported animal");

I

In this example, you needed to know if the animal was an instance of each subclass
before applying the cast and calling the appropriate method. For example, a Bird or
Lion probably will not have an addHay () method, a Cow or Lion probably will not have
an addSeed () method, and so on. The else throwing an exception is common. It allows
the code to fail when an unexpected Animal is passed in. This is a good thing. It tells the
programmer to fix the code rather than quietly letting the new animal go hungry.

This is not a good way to write code. instanceof and the practice of casting with if state-
ments is extremely rare outside of the exam. It is mostly used when writing a library that will be
used by many others. On the exam, you need to understand how instanceof works though.

Understanding Virtual Method
Invocation

You just saw a poor way of feeding some animals. A better way would be to make each
Animal know how to feed itself. Granted this won’t work in the real world, but there could
be a sign in each animal habitat or the like.

abstract class Animal {
public abstract void feed(); }
}
class Cow extends Animal {
public void feed() { addHay(); }
private void addHay() { }

10 Chapter 1 = Advanced Class Design

class Bird extends Animal {
public void feed() { addSeed(); }
private void addSeed() { }

}

class Lion extends Animal {
public void feed() { addMeat(); }
private void addMeat() { }

The Animal class is abstract, and it requires that any concrete Animal subclass have
a feed() method. The three subclasses that we defined have a one-line feed () method
that delegates to the class-specific method. A Bird still gets seed, a Cow still gets hay, and
so forth. Now the method to feed the animals is really easy. We just call feed() and the
proper subclass’s version is run.

This approach has a huge advantage. The feedAnimal() method doesn’t need to change
when we add a new Animal subclass. We could have methods to feed the animals all over
the code. Maybe the animals get fed at different times on different days. No matter. feed()
still gets called to do the work.

public void feedAnimal(Animal animal) {
animal.feed();

We’ve just relied on virtual method invocation. We actually saw virtual methods on the
OCA. They are just regular non-static methods. Java looks for an overridden method rather
than necessarily using the one in the class that the compiler says we have. The only thing
new about virtual methods on the OCP is that Oracle now calls them virtual methods in
the objectives. You can simply think of them as methods.

In the above example, we have an Animal instance, but Java didn’t call feed on the
Animal class. Instead Java looked at the actual type of animal at runtime and called feed
on that.

Notice how this technique is called virtual method invocation. Instance variables don’t
work this way. In this example, the Animal class refers to name. It uses the one in the super-
class and not the subclass.

abstract class Animal {
String name = "?2?22?";
public void printName() {
System.out.println(name);

}
class Lion extends Animal {
String name = "Leo";

Annotating Overridden Methods 1

public class PlayWithAnimal {
public static void main(String... args) {
Animal animal = new Lion();
animal.printName();

This outputs ???. The name declared in Lion would only be used if name was referred to
from Lion (or a subclass of Lion.) But no matter how you call printName (), it will use the
Animal’s name, not the Lion’s name.

Aside from the formal sounding name, there isn’t anything new here. Let’s try one more
example to make sure that the exam can’t trick you. What does the following print?

abstract class Animal {
public void careFor() {
play();
}
public void play() {
System.out.println("pet animal");
1}
class Lion extends Animal {
public void play() {
System.out.println("toss in meat");
}}
public class PlayWithAnimal {
public static void main(String... args) {
Animal animal = new Lion();
animal.careFor();

I

The correct answer is toss in meat. The main method creates a new Lion and calls
careFor. Since only the Animal superclass has a careFor method, it executes. That method
calls play. Java looks for overridden methods, and it sees that Lion implements play.

Even though the call is from the Animal class, Java still looks at subclasses, which is good
because you don’t want to pet a Lion!

Annotating Overridden Methods

You already know how to override a method. Java provides a way to indicate explicitly in
the code that a method is being overridden. In Java, when you see code that begins with an
@ symbol, it is an annotation. An annotation is extra information about the program, and it
is a type of metadata. It can be used by the compiler or even at runtime.

12 Chapter 1 = Advanced Class Design

The @0Override annotation is used to express that you, the programmer, intend for this
method to override one in a superclass or implement one from an interface. You don’t tradi-
tionally think of implementing an interface as overriding, but it actually is an override. It so
happens that the method being overridden is an abstract one.

The following example shows this annotation in use:

1: class Bobcat {

2: public void findDen() { }

3: }

4: class BobcatMother extends Bobcat {
5: @Override

6: public void findDen() { }

7: }

Line § tells the compiler that the method on line 6 is intended to override another
method. Java ignores whitespace, which means that lines 5 and 6 could be merged into
one:

6: @Override public void findDen(boolean b) { }

This is helpful because the compiler now has enough information to tell you when you’ve
messed up. Imagine if you wrote

1: class Bobcat {

2: public void findDen() { }

3: }

4: class BobcatMother extends Bobcat {

5: @Override

6: public void findDen(boolean b) { } // DOES NOT COMPILE
T }

Line 5 still tells Java the method that line 6 is intended to override another method.
However, the method on line 6 overloads the method rather than overriding it. Java recog-
nizes that this is a broken promise and gives it a compiler error.

It is useful to have the compiler tell you that you are not actually overriding when you
think that you are. The problem could be a typo. Or it could be that the superclass or
interface changed without your knowledge. Either way, it is useful information to know so
that you can fix the code. It is a great idea to get in the habit of using @0verride in order to
avoid accidentally overloading a method.

@Override is allowed only when referencing a method. Just as there is no such thing as
overriding a field, the annotation cannot be used on a field either.

Much of the time, you will not see @0verride used on the exam when a method is
being overridden. The exam is testing whether you can recognize an overridden method.
However, when you see @0verride show up on the exam, you must check carefully that
the method is doing one of three things:

Coding equals, hashCode, and toString 13

= Implementing a method from an interface
= Overriding a superclass method of a class shown in the example

= Overriding a method declared in Object, such as hashCode, equals, or toString

To be fair, the third one is a special case of the second. It is less obvious. Since the meth-
ods aren’t declared on the page in front of you, we mention it specifically. Pay attention to
the signatures of these three methods in the next sections so that you know the method sig-
natures well and can spot where they are overridden.

Coding equals, hashCode, and toString

All classes in Java inherit from java.lang.Object, either directly or indirectly, which
means that all classes inherit any methods defined in Object. Three of these methods are
common for subclasses to override with a custom implementation. First, we will look at
toString(). Then we will talk about equals() and hashCode (). Finally, we will discuss
how equals() and hashCode() relate.

toString

When studying for the OCA, we learned that Java automatically calls the toString()
method if you try to print out an object. We also learned that some classes supply a human-
readable implementation of toString() and others do not. When running the following
example, we see one of each:

public static void main(String[] args) {
System.out.println(new ArrayList()); // 1
System.out.println(new String[0]); // [Ljava.lang.String;@65cc892e

ArrayList provided an implementation of toString() that listed the contents of the
ArraylList, in this case, an empty ArrayList. (If you want to be technical about it, a super-
class of ArrayList implemented toString() and ArrayList inherited that one instead of
the one in Object, whereas the array used the default implementation from Object.) You
don’t need to know that for the exam, though.

Clearly, providing nice human-readable output is going to make things easier for develop-
ers working with your code. They can simply print out your object and understand what it
represents. Luckily, it is easy to override toString() and provide your own implementation.

Let’s start with a nice, simple example:

public class Hippo {
private String name;
private double weight;

14 Chapter 1 = Advanced Class Design

public Hippo(String name, double weight) {
this.name = name;
this.weight = weight;

}

@override

public String toString() {
return name;

}

public static void main(String[] args) {
Hippo hl = new Hippo("Harry", 3100);
System.out.println(hl); // Harry

I

Now when we run this code, it prints Harry. Granted that we have only one Hippo, so it
isn’t hard to keep track of this! But when the zoo later gets a whole family of hippos, it will
be easier to remember who is who.

When you implement the toString() method, you can provide as much or as little infor-
mation as you would like. In this example, we use all of the instance variables in the object:

public String toString() {
return "Name: " + name + ", Weight: " + weight;

@ Real World Scenario
The Easy Way to Write toString() Methods

Once you've written a toString() method, it starts to get boring to write more—especially
if you want to include a lot of instance variables. Luckily, there is an open source library that
takes care of it for you. Apache Commons Lang (http://commons.apache.org/proper/
commons-lang/) provides some methods that you might wish were in core Java.

This is all you have to write to have Apache Commons return all of the instance variables
inaString:

public String toString() {
return ToStringBuilder.reflectionToString(this);
}

Calling our Hippo test class with this toString() method outputs something like
toString.Hippo@l2da89a7[name=Harry,weight=3100.0]. You might be wondering what

http://commons.apache.org/proper/commons-lang/
http://commons.apache.org/proper/commons-lang/

Coding equals, hashCode, and toString 15

this reflection thing is that is mentioned in the method name. Reflection is a technique
used in Java to look at information about the class at runtime. This lets the ToString-
Builder class determine what are all of the instance variables and to construct a
String with each.

When testing your code, there is a benefit to not having information in toString()
that isn’t useful to your caller (12da89a7). Apache Commons accounts for this as well.
You can write

@override public String toString() {
return ToStringBuilder.reflectionToString(this,
ToStringStyle.SHORT_PREFIX_STYLE);
}

This time our Hippo test class outputs Hippo[name=Harry,weight=3100.0]. There
are a few other styles that support letting you choose to omit the class names or the
instance variable names.

equals

Remember that Java uses == to compare primitives and for checking if two variables refer
to the same object. Checking if two objects are equivalent uses the equals() method, or at
least it does if the developer implementing the method overrides equals(). In this example,
you can see that only one of the two classes provides a custom implementation of equals():

String sl = new String("lion");

String s2 = new String("lion");
System.out.println(sl.equals(s2)); // true
StringBuilder sbl = new StringBuilder("lion");

StringBuilder sb2 = new StringBuilder("lion");
System.out.println(sbl.equals(sb2)); // false

String does have an equals() method. It checks that the values are the same.
StringBuilder uses the implementation of equals() provided by Object, which simply
checks if the two objects being referred to are the same.

There is more to writing your own equals() method than there was to writing
toString(). Suppose the zoo gives every lion a unique identification number. The following
Lion class implements equals() to say that any two Lion objects with the same ID are the
same Lion:

1: public class Lion {
2: private int idNumber;

16 Chapter 1 = Advanced Class Design

3: private int age;

4: private String name;

5: public Lion(int idNumber, int age, String name) {
6: this.idNumber = idNumber;

7. this.age = age;

8: this.name = name;

9: }

10: @override public boolean equals(Object obj) {
11: if (!(obj dnstanceof Lion)) return false;
12: Lion otherLion = (Lion) obj;

13: return this.idNumber == otherLion.idNumber;
14: }

15: }

First, pay attention to the method signature on line 10. It takes an Object as the method
parameter rather than a Lion. Line 11 checks whether a cast would be allowed. You get to use
the new instanceof operator that you just learned! There is no way that a Lion is going to be
equal to a String. The method needs to return false when this occurs. If you get to line 12, a
cast is OK. Then line 13 checks whether the two objects have the same identification number.

The this. syntax is not required. Line 12 could have been return idNumber == other-
Lion.idNumber. Many programmers explicitly code this. to be explicit about the object
being referenced.

The Contract for equals() Methods

Since equals() is such a key method, Java provides a number of rules in the contract for
the method. The exam expects you to recognize correct and incorrect equals () methods,
but it will not ask you to name which property is broken. That said, it is helpful to have
seen it at least once.

The equals() method implements an equivalence relation on non-null object references:
= It is reflexive: For any non-null reference value x, x.equals(x) should return true.

= It is symmetric: For any non-null reference values x and y, x.equals(y) should return
true if and only if y.equals(x) returns true.

= |tis transitive: For any non-null reference values x, y, and z, if x.equals(y) returns
true and y.equals(z) returns true, then x.equals(z) should return true.

= |tis consistent: For any non-null reference values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false, provided no
information used in equals comparisons on the objects is modified.

= For any non-null reference value x, x.equals(null) should return false.

Coding equals, hashCode, and toString

17

Much of this is common sense. The definition of equality doesn’t change at random,
and the same objects can’t be equal “sometimes.” The most interesting rule is the last
one. It should be obvious that an object and null aren’t equal. The key is that equals()
needs to return false when this occurs rather than throw a NullPointerException.

For practice, can you see what is wrong with this equals() method?

public boolean equals(Lion obj) {
if (obj == null) return false;
return this.idNumber == obj.idNumber;

There is actually nothing wrong with this method. It is a perfectly good method.
However, it does not override equals() from Object. It overloads that method, which is
probably not what was intended.

@ Real World Scenario

The Easy Way to Write equals () Methods

Like toString(), you can use Apache Commons Lang to do a lot of the work for you. If
you want all of the instance variables to be checked, your equals() method can be one
line:

public boolean equals(Object obj) {
return EqualsBuilder.reflectionEquals(this, obj);

}

This is nice. However, for equals (), it is common to look at just one or two instance vari-
ables rather than all of them.

public boolean equals(Object obj) {
if (!(obj instanceof LionEqualsBuilder)) return false;
Lion other = (Lion) obj;
return new EqualsBuilder().appendSuper (super.equals(obj))
.append (idNumber, other.idNumber)
.append(name, other.name)
.isEquals();

18 Chapter 1 = Advanced Class Design

Not quite as elegant, right? You have to remember to handle the null and instanceof
guard conditions first. It is still better than having to code the whole thing by hand,
though. Comparing the idNumber is easy because you can call ==. Comparing the name
means checking that either both names are null or the names are the same. If either
name is null, you need to return false. This logic is a bit messy if you write it out by
hand.

hashCode

Whenever you override equals(), you are also expected to override hashCode (). The hash
code is used when storing the object as a key in a map. You will see this in Chapter 3,
“Generics and Collections.”

A hash code is a number that puts instances of a class into a finite number of categories.
Imagine that I gave you a deck of cards, and I told you that I was going to ask you for spe-
cific cards and I want to get the right card back quickly. You have as long as you want to
prepare, but ’'m in a big hurry when I start asking for cards. You might make 13 piles of
cards: All of the aces in one pile, all the twos in another pile, and so forth. That way, when
I ask for the five of hearts, you can just pull the right card out of the four cards in the pile
with fives. It is certainly faster than going through the whole deck of 52 cards! You could
even make 52 piles if you had enough space on the table.

The following is the code that goes with our little story. Cards are equal if they have the
same rank and suit. They go in the same pile (hash code) if they have the same rank.

public class Card {
private String rank;
private String suit;
public Card(String r, String s) {
if (r == null || s == null)
throw new IllegalArgumentException();
rank = r;
suit = s;
}
public boolean equals(Object obj) {
if (!(obj instanceof Card)) return false;
Card ¢ = (Card) obj;
return rank.equals(c.rank) && suit.equals(c.suit);
}
public int hashCode() {
return rank.hashCode();

Coding equals, hashCode, and toString 19

In the constructor, you make sure that neither instance variable is null. This check
allows equals() to be simpler because you don’t have to worry about null there. The
hashCode () method is quite simple. It asks the rank for its hash code and uses that.

That’s all well and good. But what do you do if you have a primitive and need the hash code?
The hash code is just a number. On the exam, you can just use a primitive number as is or divide
to get a smaller int. Remember that all of the instance variables don’t need to be used in a
hashCode () method. It is common not to include boolean and char variables in the hash code.

The official JavaDoc contract for hashCode () is harder to read than it needs to be. The
three points in the contract boil down to these:

= Within the same program, the result of hashCode () must not change. This means that
you shouldn’t include variables that change in figuring out the hash code. In our hippo
example, including the name is fine. Including the weight is not because hippos change
weight regularly.

= If equals() returns true when called with two objects, calling hashCode () on each of
those objects must return the same result. This means hashCode () can use a subset of
the variables that equals() uses. You saw this in the card example. We used only one
of the variables to determine the hash code.

= If equals() returns false when called with two objects, calling hashCode () on each of
those objects does not have to return a different result. This means hashCode () results
do not need to be unique when called on unequal objects.

Going back to our Lion, which has three instance variables and only used idNumber in
the equals() method, which of these do you think are legal hashCode () methods?

16: public int hashCode() { return idNumber; }

17: public int hashCode() { return 6; }

18: public long hashcode() { return idNumber; }

19: public int hashCode() { return idNumber * 7 + age; }

Line 16 is what you would expect the hashCode () method to be. Line 17 is also legal. It
isn’t particularly efficient. It is like putting the deck of cards in one giant pile. But it is legal.
Line 18 is not an override of hashCode (). It uses a lowercase ¢, which makes it a different
method. If it were an override, it wouldn’t compile because the return type is wrong. Line
19 is not legal because it uses more variables than equals().

@ Real World Scenario

The Easy Way to Write hashCode () Methods

You probably thought that this was going to be about the Apache Commons Lang class
for hash code. There is one, but it isn’t the easiest way to write hash code.

20 Chapter 1 = Advanced Class Design

It is easier to code your own. Just pick the key fields that identify your object (and
don’t change during the program) and combine them:

public int hashCode() {
return keyField + 7 * otherKeyField.hashCode();
}

It is common to multiply by a prime number when combining multiple fields in the
hash code. This makes the hash code more unique, which helps when distributing
objects into buckets.

Working with Enums

In programming, it is common to have a type that can only have a finite set of values. An
enumeration is like a fixed set of constants. In Java, an enum is a class that represents an
enumeration. It is much better than a bunch of constants because it provides type-safe
checking. With numeric constants, you can pass an invalid value and not find out until
runtime. With enums, it is impossible to create an invalid enum type without introducing a
compiler error.

Enumerations show up whenever you have a set of items whose types are known at com-
pile time. Common examples are the days of the week, months of the year, the planets in
the solar system, or the cards in a deck. Well, maybe not the planets in a solar system, given
that Pluto had its planetary status revoked.

To create an enum, use the enum keyword instead of the class keyword. Then list all of
the valid types for that enum.

public enum Season {
WINTER, SPRING, SUMMER, FALL

Since an enum is like a set of constants, use the uppercase letter convention that you used
for constants.

Behind the scenes, an enum is a type of class that mainly contains static members. It
also includes some helper methods like name () that you will see shortly. Using an enum is
easy:

Season s = Season.SUMMER;
System.out.println(Season.SUMMER) ; // SUMMER
System.out.println(s == Season.SUMMER); // true

As you can see, enums print the name of the enum when toString() is called. They are
also comparable using == because they are like static final constants.

Working with Enums 21

An enum provides a method to get an array of all of the values. You can use this like any
normal array, including in a loop:

for (Season season: Season.values()) {
System.out.println(season.name() + " " + season.ordinal());

The output shows that each enum value has a corresponding int value in the order in
which they are declared. The int value will remain the same during your program, but the
program is easier to read if you stick to the human-readable enum value.

WINTER 0
SPRING 1
SUMMER 2
FALL 3

You can’t compare an int and enum value directly anyway. Remember that an enum is a
type and not an int.

if (Season.SUMMER == 2) {} // DOES NOT COMPILE

You can also create an enum from a String. This is helpful when working with older
code. The String passed in must match exactly, though.

Season sl = Season.valueOf("SUMMER"); // SUMMER
Season s2 = Season.valueOf("summer"); // exception

The first statement works and assigns the proper enum value to s1. The second statement
encounters a problem. There is no enum value with the lowercase name “summer.” Java
throws up its hands in defeat and throws an I1legalArgumentException.

Exception in thread "main" java.lang.IllegalArgumentException: No enum constant
enums . Season.summer

Another thing that you can’t do is extend an enum.
public enum ExtendedSeason extends Season { } // DOES NOT COMPILE

The values in an enum are all that are allowed. You cannot add more at runtime by
extending the enum.

Now that we’ve covered the basics, we look at using enums in switch statements and
how to add extra functionality to enums.

Using Enums in Switch Statements
Enums may be used in switch statements. Pay attention to the case value in this code:

Season summer = Season.SUMMER;
switch (summer) {

22 Chapter 1 = Advanced Class Design

case WINTER:
System.out.println("Get out the sled!");
break;

case SUMMER:
System.out.println("Time for the pool!");
break;

default:
System.out.println("Is it summer yet?");

The code prints "Time for the pool!" since it matches SUMMER. Notice that we
just typed the value of the enum rather than writing Season.WINTER. The reason is that
Java already knows that the only possible matches can be enum values. Java treats the
enum type as implied. In fact, if you were to type case Season.WINTER, it would not
compile. Keep in mind that an enum type is not an int. The following code does not
compile:

switch (summer) {

case 0: // DOES NOT COMPILE
System.out.println("Get out the sled!");
break;

You can’t compare an int with an enum. Pay special attention when working with enums
that they are used only as enums.

Adding Constructors, Fields, and Methods

Enums can have more in them than just values. It is common to give state to each
one. Our zoo wants to keep track of traffic patterns for which seasons get the most
visitors.

public enum Season {
WINTER("Low"), SPRING("Medium"), SUMMER("High"), FALL("Medium");
private String expectedVisitors;
private Season(String expectedVisitors) {

}
public void printExpectedVisitors() {
System.out.println(expectedVisitors);

3]

There are a few things to notice here. On line 2, we have a semicolon. This is required if
there is anything in the enum besides the values.

1
2
3
4
5: this.expectedVisitors = expectedVisitors;
6
7
8
9

Working with Enums 23

This is such a subtle detail that we are going to say it again: remember that
ITE the semicolon at the end of the enum values is optional only if the only
thing in the enum is that list of values.

Lines 3-9 are regular Java code. We have an instance variable, a constructor, and a
method. The constructor is private because it can only be called from within the enum.
The code will not compile with a public constructor.

Calling this new method is easy:

Season.SUMMER.printExpectedVisitors();

Notice how we don’t appear to call the constructor. We just say that we want the enum
value. The first time that we ask for any of the enum values, Java constructs all of the enum
values. After that, Java just returns the already-constructed enum values. Given that expla-
nation, you can see why this code calls the constructor only once:

public enum OnlyOne {

ONCE(true);

private OnlyOne(boolean b) {
System.out.println("constructing");

}

public static void main(String[] args) {
OnlyOne firstCall = OnlyOne.ONCE; // prints constructing
OnlyOne secondCall = OnlyOne.ONCE; // doesn't print anything

1}

This technique of a constructor and state allows you to combine logic with the benefit of
a list of values. Sometimes, you want to do more. For example, our zoo has different sea-
sonal hours. It is cold and gets dark early in the winter. We could keep track of the hours
through instance variables, or we can let each enum value manage hours itself:

public enum Season {

WINTER {

public void printHours() { System.out.println("9am-3pm"); }
}, SPRING {

public void printHours() { System.out.println("9am-5pm"); }
}, SUMMER {

public void printHours() { System.out.println("9am-7pm"); }
}, FALL {

public void printHours() { System.out.println("9am-5pm"); }
s

public abstract void printHours();

24 Chapter 1 = Advanced Class Design

What’s going on here? It looks like we created an abstract class and a bunch of tiny sub-
classes. In a way we did. The enum itself has an abstract method. This means that each and
every enum value is required to implement this method. If we forget one, we get a compiler error.

If we don’t want each and every enum value to have a method, we can create a default
implementation and override it only for the special cases:

public enum Season3 {
WINTER {
public void printHours() { System.out.println("short hours"); }
}, SUMMER {
public void printHours() { System.out.println("long hours"); }
}, SPRING, FALL;
public void printHours() { System.out.println("default hours"); }

This one looks better. We only code the special cases and let the others use the
enum-provided implementation. Notice how we still have the semicolon after FALL. This is
needed when we have anything other than just the values. In this case, we have a default
method implementation.

Just because an enum can have lots of methods, doesn’t mean that it should. Try to keep
your enums simple. If your enum is more than a page or two, it is way too long. Most enums
are just a handful of lines. The main reason they get long is that when you start with a one-
or two-line method and then declare it for each of your dozen enum types, it grows long.
When they get too long or too complex, it makes the enum hard to read.

Creating Nested Classes

A nested class is a class that is defined within another class. A nested class that is not
static is called an inner class. There are four of types of nested classes:

= A member inner class is a class defined at the same level as instance variables. It is not
static. Often, this is just referred to as an inner class without explicitly saying the type.

= A local inner class is defined within a method.

= An anonymous inner class is a special case of a local inner class that does not have a
name.

= A static nested class is a static class that is defined at the same level as static
variables.

There are a few benefits of using inner classes. They can encapsulate helper classes by
restricting them to the containing class. They can make it easy to create a class that will
be used in only one place. They can make the code easier to read. They can also make the
code harder to read when used improperly. Unfortunately, the exam tests these edge cases

Creating Nested Classes 25

where programmers wouldn’t actually use a nested class. This section covers all four types
of nested classes.

Member Inner Classes

A member inner class is defined at the member level of a class (the same level as the methods,
instance variables, and constructors). Member inner classes have the following properties:

= Can be declared public, private, or protected or use default access

= Can extend any class and implement interfaces

= Can be abstract or final

= Cannot declare static fields or methods

= Can access members of the outer class including private members

The last property is actually pretty cool. It means that the inner class can access the
outer class without doing anything special. Ready for a complicated way to print “Hi”
three times?

1 public class Outer {

2 private String greeting = "Hi";

3

4 protected class Inner {

5: public int repeat = 3;

6 public void go() {

7 for (int i = 0; i < repeat; i++)
8 System.out.println(greeting);
9: }

10: }

11:

12: public void callInner() {

13: Inner inner = new Inner();

14: inner.go();

15: }

16: public static void main(String[] args) {
17: Outer outer = new Outer();

18: outer.calllnner();

19: 1} }

A member inner class declaration looks just like a stand-alone class declaration except
that it happens to be located inside another class—oh, and that it can use the instance vari-
ables declared in the outer class. Line 8 shows that the inner class just refers to greeting
as if it were available. This works because it is in fact available. Even though the variable is
private, it is within that same class.

26 Chapter 1 = Advanced Class Design

Since a member inner class is not static, it has to be used with an instance of the outer
class. Line 13 shows that an instance of the outer class can instantiate Inner normally. This
works because callInner() is an instance method on Outer. Both Inner and callInner()
are members of Outer. Since they are peers, they just write the name.

There is another way to instantiate Inner that looks odd at first. OK, well maybe not
just at first. This syntax isn’t used often enough to get used to it:

20: public static void main(String[] args) {

21: Outer outer = new Outer();

22: Inner inner = outer.new Inner(); // create the 1inner class
23: inner.go();

24: 1}

Let’s take a closer look at line 22. We need an instance of Outer in order to create Inner.
We can’t just call new Inner() because Java won’t know with which instance of Outer it is
associated. Java solves this by calling new as if it were a method on the outer variable.

.class Files for Inner Classes

Compiling the Outer.java class with which we have been working creates two class
files. Outer.class you should be expecting. For the inner class, the compiler creates
Outers$Inner.class. You don't need to know this syntax for the exam. We mention it so
that you aren’t surprised to see files with $ appearing in your directories. You do need to
understand that multiple class files are created.

Inner classes can have the same variable names as outer classes. There is a special way of
calling this to say which class you want to access. You also aren’t limited to just one inner
class. Please never do this in code you write. Here is how to nest multiple classes and access
a variable with the same name in each:

1 public class A {

2 private int x = 10;

3 class B {

4 private int x = 20;

5: class C {

6 private int x = 30;

7 public void allTheX() {

8 System.out.println(x); // 30
9: System.out.println(this.x); // 30
10: System.out.println(B.this.x); // 20
11: System.out.println(A.this.x); /] 10

Creating Nested Classes 21

12: } 1}

13: public static void main(String[] args) {
14: A a = new A();

15: A.B b = a.new B();

16: A.B.C c = b.new C();

17: c.allTheX();

18: 1}

Yes, this code makes us cringe too. It has two nested classes. Line 14 instantiates the out-
ermost one. Line 15 uses the awkward syntax to instantiate a B. Notice the type is A.B. We
could have written B as the type because that is available at the member level of B. Java knows
where to look for it. On line 16, we instantiate a C. This time, the A.B.C type is necessary to
specify. C is too deep for Java to know where to look. Then line 17 calls a method on c.

Lines 8 and 9 are the type of code that we are used to seeing. They refer to the instance vari-
able on the current class—the one declared on line 6 to be precise. Line 10 uses this in a special
way. We still want an instance variable. But this time we want the one on the B class, which is
the variable on line 4. Line 11 does the same thing for class A, getting the variable from line 2.

Private Interfaces

This following code looks weird but is legal:

public class CaseOfThePrivateInterface {
private interface Secret {
public void shh();
}
class DontTell implements Secret {
public void shh() { }
1}

The rule that all methods in an interface are public still applies. A class that implements
the interface must define that method as public.

The interface itself does not have to be public, though. Just like any inner class, an inner
interface can be private. This means that the interface can only be referred to within the
current outer class.

Local Inner Classes

A local inner class is a nested class defined within a method. Like local variables, a local
inner class declaration does not exist until the method is invoked, and it goes out of scope
when the method returns. This means that you can create instances only from within the

28 Chapter 1 = Advanced Class Design

method. Those instances can still be returned from the method. This is just how local vari-
ables work. Local inner classes have the following properties:

= They do not have an access specifier.

= They cannot be declared static and cannot declare static fields or methods.

= They have access to all fields and methods of the enclosing class.

= They do not have access to local variables of a method unless those variables are final

or effectively final. More on this shortly.

Ready for an example? Here’s a complicated way to multiply two numbers:

1 public class Outer {

2 private int length = 5;

3 public void calculate() {

4 final int width = 20;

5: class Inner {

6 public void multiply() {

7 System.out.println(length * width);
8

9

}

}
10: Inner 1inner = new Inner();
11: inner.multiply();
12: }
13: public static void main(String[] args) {
14: Outer outer = new Outer();
15: outer.calculate();
16: }
17: }

Lines 5 through 9 are the local inner class. That class’s scope ends on line 12 where the
method ends. Line 7 refers to an instance variable and a final local variable, so both vari-
able references are allowed from within the local inner class.

Earlier, we made the statement that local variable references are allowed if they are final
or effectively final. Let’s talk about that now. The compiler is generating a class file from your
inner class. A separate class has no way to refer to local variables. If the local variable is finat,
Java can handle it by passing it to the constructor of the inner class or by storing it in the class
file. If it weren’t effectively final, these tricks wouldn’t work because the value could change
after the copy was made. Up until Java 7, the programmer actually had to type the final
keyword. In Java 8, the “effectively final” concept was introduced. If the code could still com-
pile with the keyword final inserted before the local variable, the variable is effectively final.

Remember that the “effectively final” concept was introduced in Java 8. If
TE you are looking at older mock exam questions online, some of the answers

about local variables and inner classes might be different.

Creating Nested Classes 29

Which of the variables do you think are effectively final in this code?

34: public void isItFinal() {

35: int one = 20;

36: int two = one;

37: two+t+;

38: int three;

39: if (one == 4) three = 3;
40: else three = 4;

41: int four = 4;

42: class Inner { }

43: four = 5;

44: }

one is effectively final. It is only set in the line in which it is declared. two is not effec-
tively final. The value is changed on line 37 after it is declared. three is effectively final
because it is assigned only once. This assignment may happen in either branch of the if
statement, but it can happen in only one of them. four is not effectively final. Even though
the assignment happens after the inner class, it is not allowed.

Anonymous Inner Classes

An anonymous inner class is a local inner class that does not have a name. It is declared

and instantiated all in one statement using the new keyword. Anonymous inner classes are
required to extend an existing class or implement an existing interface. They are useful when
you have a short implementation that will not be used anywhere else. Here’s an example:

1 public class AnonInner {

2 abstract class SaleTodayOnly {

3 abstract 1int dollarsOff();

4 }

5: public int admission(int basePrice) {

6 SaleTodayOnly sale = new SaleTodayOnly() {
7 int dollarsOff() { return 3; }

8 };

9 return basePrice - sale.dollarsOff();

10: } }

Lines 2 through 4 define an abstract class. Lines 6 through 8 define the inner class.
Notice how this inner class does not have a name. The code says to instantiate a new
SaleTodayOnly object. But wait. SaleTodayOnly is abstract. This is OK because we
provide the class body right there—anonymously.

Pay special attention to the semicolon on line 8. We are declaring a local variable on
these lines. Local variable declarations are required to end with semicolons, just like other
Java statements—even if they are long and happen to contain an anonymous inner class.

30 Chapter 1 = Advanced Class Design

Now we convert this same example to implement an interface instead of extending an
abstract class:

1 public class AnonInner {

2 interface SaleTodayOnly {

3 int dollarsOff();

4 }

5: public int admission(int basePrice) {

6: SaleTodayOnly sale = new SaleTodayOnly() {
7 public int dollarsOff() { return 3; }

8 s

9: return basePrice - sale.dollarsOff();

10: 1}

The most interesting thing here is how little has changed. Lines 2 through 4 declare an
interface instead of an abstract class. Line 7 is public instead of using default access
since interfaces require public methods. And that is it. The anonymous inner class is the
same whether you implement an interface or extend a class! Java figures out which one
you want automatically.

But what if we want to implement both an interface and extend a class? You can’t with
an anonymous inner class, unless the class to extend is java.lang.0Object. Object is a spe-
cial class, so it doesn’t count in the rule. Remember that an anonymous inner class is just
an unnamed local inner class. You can write a local inner class and give it a name if you
have this problem. Then you can extend a class and implement as many interfaces as you
like. If your code is this complex, a local inner class probably isn’t the most readable option
anyway.

There is one more thing that you can do with anonymous inner classes. You can
define them right where they are needed, even if that is an argument to another
method:

1: public class AnonInner {

2: interface SaleTodayOnly {

3: int dollarsOff();

4: }

5: public int pay() {

6: return admission(5, new SaleTodayOnly() {

7: public int dollarsOff() { return 3; }
8: 1}

9:

}
10: public int admission(int basePrice, SaleTodayOnly sale) {

Creating Nested Classes

11: return basePrice - sale.dollarsOff();

12: 1}

Lines 6 through 8 are the anonymous inner class. We don’t even store it in a local

31

variable. Instead, we pass it directly to the method that needs it. Reading this style of code

does take some getting used to. But it is a concise way to create a class that you will use
only once.

Before you get too attached to anonymous inner classes, know that you’ll see a shorter
way of coding them in Chapter 4, “Functional Programming.”

@ Real World Scenario

Inner Classes as Event Handlers

Writing graphical user interface code isn't on the exam. Nonetheless, it is a very common
use of inner classes, so we'll give you a taste of it here:

JButton button = new JButton("red");
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
// handle the button click

1
This technique gives the event handler access to the instance variables in the class with
which it goes. It works well for simple event handling.

You should be aware that inner classes go against some fundamental concepts, such as
reuse of classes and high cohesion (discussed in the next chapter). Therefore, make sure
that inner classes make sense before you use them in your code.

Static Nested Classes

The final type of nested class is not an inner class. A static nested class is a static
class defined at the member level. It can be instantiated without an object of the

enclosing class, so it can’t access the instance variables without an explicit object of

the enclosing class. For example, new OuterClass().var allows access to the instance

variable var.

32 Chapter 1 = Advanced Class Design

In other words, it is like a regular class except for the following:

= The nesting creates a namespace because the enclosing class name must be used to refer

to it.

= It can be made private or use one of the other access modifiers to encapsulate it.

The enclosing class can refer to the fields and methods of the static nested class.

public class Enclosing {
static class Nested {
private int price = 6;
: }
public static void main(String[] args) {
Nested nested = new Nested();
System.out.println(nested.price);

o N oo b~ W N

1

Line 6 instantiates the nested class. Since the class is static, you do not need an
instance of Enclosing in order to use it. You are allowed to access private instance
variables, which is shown on line 7.

Importing a static Nested Class

Importing a static nested class is interesting. You can import it using a regular import:

package bird;
public class Toucan {
public static class Beak {}
}
package watcher;
import bird.Toucan.Beak; // regular {import ok
public class BirdwWatcher {
Beak beak;

And since it is static, alternatively you can use a static import:
import static bird.Toucan.Beak;

Either one will compile. Surprising, isn’t it? Java treats the static nested class as if it
were a namespace.

Summary 33

To review the four types of nested classes, make sure that you know the information in

Table 1.2.

TABLE 1.2 Types of nested classes

Member Local inner

inner class class Anonymous inner class static nested class
Access public, None. None. Already local to public, protected,
modifiers protected, Already statement. private, or default
allowed private, local to access

or default method.

access
Can extend Yes Yes No—must have exactly Yes
any class and one superclass or one
any number interface
of interfaces
Can be Yes Yes N/A—because no class Yes
abstract definition
Can be final Yes Yes N/A—because no class Yes

definition

Can access Yes Yes Yes No (not directly;
instance requires an
members of instance of the
enclosing enclosing class)
class
Can access No Yes—if Yes—if final or effec- No
local variables final or tively final
of enclosing effectively
class final
Can declare No No No Yes
static
methods

Summary

The instanceof keyword compares an object to a class or interface type. It also looks at
subclasses and subinterfaces. x instanceof Object returns true unless x is null. If the
compiler can determine that there is no way for instanceof to return true, it will generate

34 Chapter 1 = Advanced Class Design

a compiler error. Virtual method invocation means that Java will look at subclasses when
finding the right method to call. This is true, even from within a method in the superclass.

The methods toString(), equals(), and hashCode() are implemented in Objects
that classes can override to change their behavior. toString() is used to provide a
human-readable representation of the object. equals() is used to specify which instance
variables should be considered for equality. equals() is required to return false when the
object passed in is null or is of the wrong type. hashCode() is used to provide a grouping
in some collections. hashCode () is required to return the same number when called with
objects that are equals().

The enum keyword is short for enumerated values or a list of values. Enums can be used
in switch statements. They are not int values and cannot be compared to int values. In a
switch, the enum value is placed in the case. Enums are allowed to have instance variables,
constructors, and methods. Enums can also have value-specific methods. The enum itself
declares that method as well. It can be abstract, in which case all enum values must
provide an implementation. Alternatively, it can be concrete, in which case enum values can
choose whether they want to override the default implementation.

There are four types of nested classes. Member inner classes require an instance of
the outer class to use. They can access private members of that outer class. Local inner
classes are classes defined within a method. They can also access private members of the
outer class. Local inner classes can also access final or effectively final local variables.
Anonymous inner classes are a special type of local inner class that does not have a name.
Anonymous inner classes are required to extend exactly one class by name or implement
exactly one interface. Static nested classes can exist without an instance of the outer class.

This chapter also contained a review of access modifiers, overloading, overriding,
abstract classes, static, final, and imports. It also introduced the optional @Override
annotation for overridden methods or methods implemented from an interface.

Exam Essentials

Be able to identify the output of code using instanceof. instanceof checks if the left
operand is the same class or interface (or a subclass) as the right operand. If the left oper-
and is null, the result is false. If the two operands are not in the same class hierarchy, the
code will not compile.

Recognize correct and incorrect implementations of equals(), hashCode(), and

toString(). public boolean equals(Object obj) returns false when called with null or
a class of the wrong type. public int hashCode() returns a number calculated with all or
some of the instance variables used in equals(). public String toString() returns any
String.

Be able to create enum classes. enums have a list of values. If that is all that is in the enum,
the semicolon after the values is optional. Enums can have instance variables, constructors,
and methods. The constructors are required to be private or package private. Methods are

Exam Essentials 35

allowed to be on the enum top level or in the individual enum values. If the enum declares an
abstract method, each enum value must implement it.

Identify and use nested classes. A member inner class is instantiated with code such as
outer.new Inner();.Local inner classes are scoped to the end of the current block of code
and not allowed to have static members. Anonymous inner classes are limited to extend-
ing a class or implementing one interface. A semicolon must end the statement creating
an anonymous inner class. Static nested classes cannot access the enclosing class instance
variables.

Know how to use imports and static imports. Classes can be imported by class name or
wildcard. Wildcards do not look at subdirectories. In the event of a conflict, class name
imports take precedence. Static imports import static members. They are written as import
static, not static import. Make sure that they are importing static methods or variables
rather than class names.

Understand the rules for method overriding and overloading. The Java compiler allows
methods to be overridden in subclasses if certain rules are followed: a method must have
the same signature, be at least as accessible as the parent method, must not declare any new
or broader exceptions, and must use covariant return types. Methods are overloaded if they
have the same method name but a different argument list. An overridden method may use
the optional @Override annotation.

36 Chapter 1 = Advanced Class Design

Review Questions

1. What is the result of the following code?

1 public class Employee {

2 public int employeeld;

3 public String firstName, lastName;
4: public int yearStarted;

5: @Override public int hashCode() {
6 return employeeld;

7
8
9

}
public boolean equals(Employee e) {
: return this.employeeld == e.employeeld;
10: }
11: public static void main(String[] args) {
12: Employee one = new Employee();
13: one.employeeld = 101;
14: Employee two = new Employee();
15: two.employeeld = 101;
16: if (one.equals(two)) System.out.println("Success");
17: else System.out.println("Failure");
18: 1}
A. Success
B. Failure
C. The hashCode() method fails to compile.
D. The equals() method fails to compile.
E. Another line of code fails to compile.
F. A runtime exception is thrown.

2. What is the result of compiling the following class?

public class Book {
private int ISBN;
private String title, author;
private int pageCount;
public int hashCode() {
return ISBN;
}
@Override public boolean equals(Object obj) {
if (!(obj dnstanceof Book)) {

Review Questions

return false;
}
Book other = (Book) obj;
return this.ISBN == other.ISBN;

}
// imagine getters and setters are here
}
A. The code compiles.
B. The code does not compile because hashCode () is incorrect.
C. The code does not compile because equals() does not override the parent method
correctly.
D. The code does not compile because equals() tries to refer to a private field.
E. The code does not compile because the ClassCastException is not handled or

declared.

F. The code does not compile for another reason.
What is the result of the following code?

String s1 = "Canada";

String s2 = new String(sl);

if(sl == s2) System.out.println("sl == s2");
if(sl.equals(s2)) System.out.println("sl.equals(s2)");

There is no output.
sl == s2
sl.equals(s2)
Both B and C.

The code does not compile.

mmo o ® >

The code throws a runtime exception.

37

What is true about the following code? You may assume city and mascot are never null.

public class BaseballTeam {
private String city, mascot;
private int numberOfPlayers;
public boolean equals(Object obj) {
if (!(obj dnstanceof BaseballTeam))
return false;
BaseballTeam other = (BaseballTeam) obj;
return (city.equals(other.city) && mascot.equals(other.mascot));

Chapter 1 = Advanced Class Design

public int hashCode() {
return numberOfPlayers;

}

// imagine getters and setters are here

}

The class does not compile.
The class compiles but has an improper equals () method.

The class compiles but has an improper hashCode () method.

S0 wp>

The class compiles and has proper equals() and hashCode () methods.

Which of the following statements are true, assuming a and b are String objects? (Choose

all that apply.)

A. Ifa.equals(b) is true, a.hashCode() == b.hashCode() is always true.

B. Ifa.equals(b) is true, a.hashCode() == b.hashCode() is sometimes but not

always true.

C. Ifa.equals(b) is false, a.hashCode() == b.hashCode() can never be true.

D. Ifa.equals(b) is false, a.hashCode() == b.hashCode() can sometimes be true.

What is the result of the following code?

public class FlavorsEnum {
enum Flavors {
VANILLA, CHOCOLATE, STRAWBERRY

}
public static void main(String[] args) {
System.out.println(Flavors.CHOCOLATE.ordinal());

CHOCOLATE
The code does not compile due to a missing semicolon.

The code does not compile for a different reason.
What is the result of the following code? (Choose all that apply.)

public class IceCream {
enum Flavors {
VANILLA, CHOCOLATE, STRAWBERRY

}
public static void main(String[] args) {

Review Questions

Flavors f = Flavors.STRAWBERRY;
switch (f) {
case 0: System.out.println("vanilla");
case 1: System.out.println("chocolate");
case 2: System.out.println("strawberry");
break;
default: System.out.println("missing flavor");

} 1}

vanilla
chocolate
strawberry
missing flavor

The code does not compile.

mmo o ® >

An exception is thrown.

What is the result of the following code?

1 public class Outer {

2 private int x = 5;

3 protected class Inner {

4 public static int x = 10;

5: public void go() { System.out.println(x); }
6 }

7 public static void main(String[] args) {
8 Outer out = new Outer();

9 Outer.Inner in = out.new Inner();
10: in.go();

11: 1}

A. The output is 5.

B. The output is 10.

C. Line 4 generates a compiler error.

D. Line 8 generates a compiler error.

E. Line 9 generates a compiler error.

F. An exception is thrown.

What is the result of the following code?

1 public class Outer {

2 private int x = 24;

3: public int getX()

4 String message = "x 1is ";

-~

39

40

10.

1.

mTmo o w>

Chapter 1 = Advanced Class Design

class Inner {
private int x = Outer.this.x;
public void printX() {
System.out.println(message + x);

}
Inner in = new Inner();
in.printX();
return x;
}
public static void main(String[] args) {
new Outer().getX();
I

X is 0.

X is 24.

Line 6 generates a compiler error.
Line 8 generates a compiler error.
Line 11 generates a compiler error.

An exception is thrown.

The following code appears in a file named Book. java. What is the result of compiling the
source file?

o U1 W N

© >

o

D.
E.

public class Book {
private int pageNumber;
private class BookReader {
public int getPage() {
return pageNumber;

1}

The code compiles successfully, and one bytecode file is generated: Book.class.

The code compiles successfully, and two bytecode files are generated: Book.class and
BookReader.class.

The code compiles successfully, and two bytecode files are generated: Book.class and
Book$BookReader.class.

A compiler error occurs on line 3.

A compiler error occurs on line 5.

Which of the following statements can be inserted to make FootballGame compile?

package my.sports;
public class Football {

12.

}

Review Questions

public static final int TEAM_SIZE = 11,

package my.apps;
// INSERT CODE HERE
public class FootballGame {

(-

®mMmoow>»

public int getTeamSize() { return TEAM_SIZE; }

import my.sports.Football;

import static my.sports.*;

import static my.sports.Football;
import static my.sports.Football.*;
static import my.sports.*;

static import my.sports.Football;

static import my.sports.Football.*;

What is the result of the following code?

public class Browsers {

static class Browser {
public void go() {
System.out.println("Inside Browser");

}

static class Firefox extends Browser {
public void go() {
System.out.println("Inside Firefox");

}
static class IE extends Browser {
@override public void go() {
System.out.println("Inside IE");

}

public static void main(String[] args) {
Browser b = new Firefox();
IE e = (IE) b;
e.go();

M

42

13.

14.

Chapter 1 = Advanced Class Design

moowm>»

Inside Browser

Inside Firefox

Inside IE

The code does not compile.

A runtime exception is thrown.

Which is a true statement about the following code?

public class IsItFurry {
static interface Mammal { }
static class Furry implements Mammal { }
static class Chipmunk extends Furry { }
public static void main(String[] args) {

I

c

C

mmo o ® >

Chipmunk ¢ = new Chipmunk();

Mammal m = c;

Furry f = c;

int result = 0;

if (c instanceof Mammal) result += 1;

if (c instanceof Furry) result += 2;

if (null dnstanceof Chipmunk) result += 4;
System.out.println(result);

The output is 0.
The output is 3.
The output is 7.

instanceof Mammal does not compile.

instanceof Furry does not compile.

null instanceof Chipmunk does not compile.

Which is a true statement about the following code? (Choose all that apply.)

import java.util. *;
public class IsItFurry {
static class Chipmunk { }

public static void main(String[] args) {

Chipmunk ¢ = new Chipmunk();

ArraylList <Chipmunk> 1 = new ArrayList<>();
Runnable r = new Thread();

int result = 0;

if (c instanceof Chipmunk) result += 1;

A
B.
C.
D
E
F

Review Questions

if (1 dinstanceof Chipmunk) result += 2;
if (r dinstanceof Chipmunk) result += 4;
System.out.println(result);

1}

The code compiles, and the output is 0.

The code compiles, and the output is 3.

The code compiles, and the output is 7.

¢ instanceof Chipmunk does not compile.

1 instanceof Chipmunk does not compile.

r instanceof Chipmunk does not compile.

15. Which of the following statements are true about the equals () method? (Choose all that
apply.)
If equals(null) is called, the method should throw an exception.

A.
B.

C.
D.
E
F

If equals(null) is called, the method should return false.

If equals(null) is called, the method should return true.

If equals() is passed the wrong type, the method should throw an exception.

If equals() is passed the wrong type, the method should return false.

If equals() is passed the wrong type, the method should return true.

16. Which of the following can be inserted in main?

public class Outer {

A.

Mmoo w

class Inner

{3

public static void main(String[] args) {
// INSERT CODE HERE

3}

Inner 1in =
Inner 1in =
Outer.Inner
Outer.Inner
Outer.Inner

Outer.Inner

new Inner();

Outer.new Inner();

in
in
in

in

new Outer.Inner();
new Outer().Inner();
new Outer().new Inner();

Outer.new Inner();

17. What is the result of the following code? (Choose all that apply.)

1:
2:

public enum AnimalClasses {
MAMMAL (true), FISH(Boolean.FALSE), BIRD(false),

43

44

18.

Chapter 1 = Advanced Class Design

3 REPTILE(false), AMPHIBIAN(false), INVERTEBRATE(false)
4 boolean hasHair;

5 public AnimalClasses(boolean hasHair) {
6: this.hasHair = hasHair;

7 }

8 public boolean hasHair() {

9: return hasHair;

10: }

11: public void giveWig() {

12: hasHair = true;

13: 13

A. Compiler error on line 2.

B. Compiler error on line 3.

C. Compiler error on line 5.

D. Compiler error on line 8.

E. Compiler error on line 12.

F. Compiler error on another line.

G. The code compiles successfully.

What is the result of the following code? (Choose all that apply.)

public class Swimmer {

enum AnimalClasses {

MAMMAL, FISH {
public boolean hasFins() { return true; }},

BIRD, REPTILE, AMPHIBIAN, INVERTEBRATE,
public abstract boolean hasFins();

}

public static void main(String[] args) {
System.out.println(AnimalClasses.FISH);
System.out.println(AnimalClasses.FISH.ordinal());
System.out.println(AnimalClasses.FISH.hasFins());
System.out.println(AnimalClasses.BIRD.hasFins());

A. fish
FISH

19.

20.

Review Questions 45

E. false
F. true
G. The code does not compile.

Which of the following can be inserted to override the superclass method? (Choose all that
apply.)

public class LearnToWalk {

public void toddle() {}
class BabyRhino extends LearnToWalk {

// INSERT CODE HERE

}
}
A. public void toddle() {}
B. public void Toddle() {}
C. public final void toddle() {}
D. public static void toddle() {}
E. public void toddle() throws Exception {}
F. public void toddle(boolean fall) {}

What is the result of the following code?

public class FourlLegged {

String walk = "walk,";

static class BabyRhino extends FourlLegged {
String walk = "toddle,";

}

public static void main(String[] args) {
FourLegged f = new BabyRhino();
BabyRhino b = new BabyRhino();
System.out.println(f.walk);
System.out.println(b.walk);

I

toddle,toddle,
toddle,walk,
walk,toddle,
walk,walk,

The code does not compile.

Mmoo w >

A runtime exception is thrown.

46 Chapter 1 = Advanced Class Design

21. Which of the following could be inserted to fill in the blank? (Choose all that apply.)

public interface Otter {
default void play() { }
}

class RiverOtter implements Otter {

}

A. @Override public boolean equals(Object o) { return false; }
B. @Override public boolean equals(Otter o) { return false; }
C. (@Override public int hashCode() { return 42; }

D. @Override public long hashCode() { return 42; }

E. @Override public void play() { }

F. @Override void play() { }

Design Patterns
and Principles

THE OCP EXAM TOPICS COVERED IN THIS
CHAPTER INCLUDE THE FOLLOWING:

v Advanced Java Class Design

= Develop code that declares, implements, and/or extends
interfaces and use the @QOverride annotation

= Create and use Lambda expressions

v Lambda Built-in Functional Interfaces

= Use the built-in interfaces included in the java.util.function
package such as Predicate, Consumer, Function, and
Supplier
v Java Class Design
= Implement encapsulation

= Implement inheritance including visibility modifiers and

composition
= Implement polymorphism

= Create and use singleton classes and immutable classes

What does it mean to write good code? How do you measure
code and differentiate good code from bad code? Although your
previous study may have focused on learning how to develop
Java code that compiles and executes properly at runtime, this chapter assumes that you already
know how to do that. The primary goal of this chapter is to teach you best practices for design-
ing Java classes and writing applications that lead to code that is easier to understand, more
maintainable, and that you and other developers can leverage in future projects.

Adhering to the design principles and design patterns enables you to create complex class
models that smoothly interact with other developers’ applications. The better your software
application is designed, the better it may adapt to changes in requirements, allowing it to
scale naturally over the course of the project lifespan. Many of the Java libraries that you
rely on to build your own applications may have started as simple projects that someone
built to solve a commonly reoccurring problem.

To put it another way, this chapter is about teaching you powerful techniques for writing
software so that you can build complex applications while avoiding the mistakes and
pitfalls that previous developers have encountered.

[
s 2

Designing an Interface

While studying for the OCA, you learned about Java interfaces, including how to declare,
extend, and implement them. We touched on some of these topics in Chapter 1, “Advanced
Class Design,” when we presented the @Override annotation. In this chapter, we will
review interfaces in more detail, although we recommend returning to your OCA study
material for a more detailed explanation if you are unfamiliar with these rules.

As you may recall, an interface is an abstract data type, similar to a class that defines a
list of public abstract methods that any class implementing the interface must provide. An
interface may also include constant public static final variables, default methods, and
static methods. The following is an example of an interface and a class that implements it:

public interface Fly {
public int getWingSpan() throws Exception;
public static final int MAX_SPEED = 100;

public default void land() {
System.out.println("Animal is landing");

Designing an Interface 49

public static double calculateSpeed(float distance, double time) {
return distance/time;

public class Eagle implements Fly {
public int getWingSpan() {
return 15;
}
public void land() {
System.out.println("Eagle is diving fast");

In this example, the first method of the interface, getWingSpan(), declares an exception
in the interface. Due to the rules of method overriding, this does not require the exception
to be declared in the overridden method in the Eagle class. The second declaration,
MAX_SPEED, is a constant static variable available anywhere within our application.

The next method, land (), is a default method that has been optionally overridden in
the Eagle class. Finally, the method calculateSpeed() is a static member and, like
MAX_SPEED, it is available without an instance of the interface.

An interface may extend another interface, and in doing so it inherits all of the abstract

methods. The following is an example of an interface that extends another interface:

public interface Walk {
boolean isQuadruped();
abstract double getMaxSpeed();

public interface Run extends Walk {
public abstract boolean canHuntWhileRunning();
abstract double getMaxSpeed();

public class Lion implements Run {
public boolean isQuadruped() {
return true;

public boolean canHuntWhileRunning() {
return true;

50 Chapter 2 = Design Patterns and Principles

public double getMaxSpeed() {
return 100;

In this example, the interface Run extends Wa'lk and inherits all of the abstract methods
of the parent interface. Notice that modifiers used in the methods isQuadruped(),
getMaxSpeed (), and canHuntWhileRunning() are different between the class and
interface definitions, such as public and abstract. The compiler automatically adds
public to all interface methods and abstract to all non-static and non-default
methods, if the developer does not provide them. By contrast, the class implementing the
interface must provide the proper modifiers. For example, the code would not compile if
getMaxSpeed () was not marked public in the Lion class.

Since the Lion class implements Run, and Run extends Walk, the Lion class must provide
concrete implementations of all inherited abstract methods. As shown in this example
with getMaxSpeed(), interface method definitions may be duplicated in a child interface
without issue.

Remember that an interface cannot extend a class, nor can a class extend an interface.
For these reasons, none of the following definitions using our previous Wa'lk interface and
Lion class will compile:

public interface Sleep extends Lion {} // DOES NOT COMPILE
public class Tiger extends Walk {} // DOES NOT COMPILE

In the first definition, the interface Sleep cannot extend Lion, since Lion is a class.
Likewise, the class Tiger cannot extend the interface Walk.

Interfaces also serve to provide limited support for multiple inheritance within the
Java language, as a class may implement multiple interfaces, such as in the following
example:

public interface Swim {

}

public interface Hop {
}

public class Frog implements Swim, Hop {

}

In this example, the Frog class implements both the Swim and Hop interfaces.
An instance of Frog may be passed to any method that accepts Swim, Hop, Frog, or
java.lang.Object as an input parameter. As shown in this example, you can also

Designing an Interface 51

construct interfaces that have neither methods nor class members, traditionally referred
to as marker interfaces. In Chapter 8, “I0,” you will see that the java.io0.Serializable
interface, which contains no methods, is an example of a marker interface.

There are numerous rules associated with implementing interfaces that you should know
quite well at this point. For example, interfaces cannot extend classes, nor can classes
extend interfaces. Interfaces may also not be marked final or instantiated directly. There
are additional rules for default methods, such as Java failing to compile if a class or
interface inherits two default methods with the same signature and doesn’t provide its
own implementation.

If you are a bit out of practice with interfaces, we recommend returning to your
OCA study material for a full explanation of rules regarding interfaces and method
overriding.

Purpose of an Interface

An interface provides a way for one individual to develop code that uses another
individual’s code, without having access to the other individual’s underlying
implementation. Interfaces can facilitate rapid application development by enabling
development teams to create applications in parallel, rather than being directly
dependent on each other.

For example, two teams can work together to develop a one-page standard interface
at the start of a project. One team then develops code that uses the interfaces while the
other team develops code that implements the interface. The development teams can
then combine their implementations toward the end of the project, and as long as both
teams developed with the same interface, they will be compatible. Of course, testing
will still be required to make sure that the class implementing the interface behaves as
expected.

@ Real World Scenario

Mock Objects

You might wonder how a developer using the interface can build their code without
access to a class that implements the interface. The developer using the interface can
create a temporary mock object, sometimes referred to as dummy code, which simulates
the real object that implements the interface with a simple implementation. The mock
object does not need to be very complex, with one line per abstract method, for example,
as it only serves as a placeholder for the real implementation. This allows the developer
using the interface to compile, run, and test their code.

For example, imagine that you were working on a racing application with the code that
calculates the winners handled by a different team. Both your team and the other team

52 Chapter 2 = Design Patterns and Principles

agreed on a RaceManager interface, as shown in the following code, with your team
using the interface and the other team implementing it:

public class Animal {}
public class Tortoise extends Animal {}
public class Hare extends Animal {}
public interface RaceManager {
public Animal getWinner(List<Animal> animals);

The good news is that your team has finished its part of the project first. The bad news
is that the other team has nothing for you to test with. While waiting for the other team
to finish, you can create a mock version of the RaceManager class, as shown in the
following sample code:

public class DummyRaceManager implements RaceManager {
public Animal getWinner(List<Animal> animals) {
return animals==null || animals.size()==0 ? null: animals.get(0);

}

The code isn’t particularly intelligent; after all it just returns the first item in the list,
but it is useful for testing purposes because it allows your team to execute your code
while the other team finishes their implementation. You could also write a version that
always returns Tortoise or Hare. The goal is just to give you something temporary
that you can work with and that allows your code to compile, regardless of whether it
works exactly as expected. After all, the full implementation of getWinner () could be
hundreds of lines long and based on very complex business rules.

Introducing Functional Programming

Java defines a functional interface as an interface that contains a single abstract method.
Functional interfaces are used as the basis for lambda expressions in functional programming.
A lambda expression is a block of code that gets passed around, like an anonymous method.
Since lambda expressions and functional programming are a cornerstone of Java 8, we
will review the basics from the OCA exam in this chapter. In Chapter 3, “Generics and
Collections,” we will apply lambda expressions to Collections classes. When we get
to Chapter 4, “Functional Programming,” we will expand our definition of functional
programming to include numerous functional interface classes, as well as show you how to

Introducing Functional Programming 53

use them with streams. As you read through the rest of the book, you’ll see how support for
lambdas and streams has been added to numerous APIs in Java 8.

Defining a Functional Interface
Let’s take a look at an example of a functional interface and a class that implements it:

@FunctionalInterface
public interface Sprint {
public void sprint(Animal animal);

public class Tiger implements Sprint {
public void sprint(Animal animal) {
System.out.println("Animal is sprinting fast! "+animal.toString());

In this example, the Sprint class is a functional interface, because it contains exactly
one abstract method, and the Tiger class is a valid class that implements the interface.

Applying the @Functionalinterface Annotation

While it is a good practice to mark a functional interface with the @FunctionalInterface
annotation for clarity, it is not required with functional programming. The Java compiler
implicitly assumes that any interface that contains exactly one abstract method is

a functional interface. Conversely, if a class marked with the @FunctionalInterface
annotation contains more than one abstract method, or no abstract methods at all, then
the compiler will detect this error and not compile.

One problem with not always marking your functional interfaces with this annotation is
that another developer may treat any interface you create that has only one method as
a functional interface. If you later modify the interface to have other abstract methods,
suddenly their code will break since it will no longer be a functional interface.

Therefore, it is recommend that you explicitly mark the interface with the
@FunctionalInterface annotation so that other developers know which interfaces they
can safely apply lambdas to without the possibility that they may stop being functional
interfaces down the road.

The exam writers aren’t likely to use this annotation, as they expect you to be able to
determine whether an interface is a functional interface on your own.

54 Chapter 2 = Design Patterns and Principles

Consider the following three interfaces. Assuming Sprint is our previously defined
functional interface, which ones would also be functional interfaces?

public interface Run extends Sprint {}

public interface SprintFaster extends Sprint {
public void sprint(Animal animal);

public interface Skip extends Sprint {
public default int getHopCount(Kangaroo kangaroo) {return 10;}
public static void skip(int speed) {}

The answer? All three are valid functional interfaces! The first interface, Run, defines no
new methods, but since it extends Sprint, which defines a single abstract method, it is also
a functional interface. The second interface, SprintFaster, extends Sprint and defines
an abstract method, but this is an override of the parent sprint () method; therefore, the
resulting interface has only one abstract method, and it is considered a functional interface.
The third interface, Skip, extends Sprint and defines a static method and a default
method, each with an implementation. Since neither of these methods is abstract, the result-
ing interface has only one abstract method and is a functional interface.

Now that you’ve seen some variations of valid functional interfaces, let’s look at some
invalid ones using our previous Sprint functional interface definition:

public interface Walk {}

public interface Dance extends Sprint {
public void dance(Animal animal);

public interface Crawl {
public void crawl();
public int getCount();

Although all three of these interfaces will compile, none of them are considered
functional interfaces. The Wa'lk interface neither extends any functional interface classes
nor defines any methods, so it is not a functional interface. The Dance method extends
Sprint, which already includes a single abstract method, bringing the total to two abstract
methods; therefore, Dance is not a functional interface. Finally, the Crawl method defines
two abstract methods; therefore it cannot be a functional interface.

In these examples, applying the @FunctionalInterface annotation to any of these
interfaces would result in a compiler error, as would attempting to use them implicitly as
functional interfaces in a lambda expression.

Introducing Functional Programming 55

Implementing Functional Interfaces with Lambdas

Now that we have defined a functional interface, we’ll show you how to implement them
using lambda expressions. As we said earlier, a lambda expression is a block of code that
gets passed around, like an anonymous method. Let’s start with a simple CheckTrait
functional interface, which has a single method test (), which takes as input an instance of
an Animal class. The definitions of the class and functional interface are as follows:

public class Animal {
private String species;
private boolean canHop;
private boolean canSwim;
public Animal(String speciesName, boolean hopper, boolean swimmer) {
species = speciesName;
canHop = hopper;
canSwim = swimmer;
}
public boolean canHop() { return canHop; }
public boolean canSwim() { return canSwim; }
public String toString() { return species; }

public interface CheckTrait {
public boolean test(Animal a);

Now that we’ve defined a structure, let’s do something with it. The following simple program
uses a lambda expression to determine if some sample animals match the specified criteria:

public class FindMatchingAnimals {
private static void print(Animal animal, CheckTrait trait) {
if(trait.test(animal))
System.out.println(animal);

public static void main(String[] args) {
print(new Animal("fish", false, true), a -> a.canHop());
print(new Animal("kangaroo", true, false), a -> a.canHop());

For illustrative purposes, the lambda expression chosen for this program is quite simple:

a -> a.canHop();

56 Chapter 2 = Design Patterns and Principles

This expression means that Java should call a method with an Animal parameter that
returns a boolean value that’s the result of a.canHop (). We know all this because we
wrote the code. But how does Java know?

Java relies on context when figuring out what lambda expressions mean. We are
passing this lambda as the second parameter of the print() method. That method
expects a CheckTrait as the second parameter. Since we are passing a lambda instead,
Java treats CheckTrait as a functional interface and tries to map it to the single
abstract method:

boolean test(Animal a);

Since this interface’s method takes an Animal, it means the lambda parameter has to be
an Animal. And since that interface’s method returns a boolean, we know that the lambda
returns a boolean.

)’ Recall that lambda expressions rely on the notion of deferred execution.
,&TE Deferred execution means that code is specified now but runs later. In this
case, lateris when the print() method calls it. Even though the execution
is deferred, the compiler will still validate that the code syntax is properly
formed.

Understanding Lambda Syntax

The syntax of lambda expressions is tricky because many parts are optional. These two
lines are equivalent and do the exact same thing:

a -> a.canHop()

(Animal a) -> { return a.canHop(); }

Let’s look at what is going on here. The left side of the arrow operator -> indicates
the input parameters for the lambda expression. It can be consumed by a functional
interface whose abstract method has the same number of parameters and compatible
data types. The right side is referred to as the body of the lambda expression. It can be
consumed by a functional interface whose abstract method returns a compatible data
type.

Since the syntax of these two expressions is a bit different, let’s look at them more
closely. The first example, shown in Figure 2.1, has three parts:

= We specify a single parameter with the name a.
= The arrow operator — separates the parameter from the body.

= The body calls a single method and returns the result of that method.

Introducing Functional Programming

FIGURE 2.1 Lambda syntax omitting optional parts

parameter name /— body

a -> a.canHop/()

|

arrow

57

The second example also has three parts, as shown in Figure 2.2; it’s just more verbose:

= We specify a single parameter with the name a and state that the type is Animal,
wrapping the input parameters in parentheses ().

= The arrow operator —> separates the parameter from the body.

= The body has one or more lines of code, including braces {}, a semicolon ;, and a
return statement.

FIGURE 2.2 Lambda syntax, including optional parts

parameter name /— body

(Animal a) -> { return a.canHop(); }

T T }\L required because in block

optional parameter type
arrow

Let’s review some of the differences between these two figures. The first difference
that you may notice is that Figure 2.2 uses parentheses (), while Figure 2.1 does not.
The parentheses () can be omitted in a lambda expression if there is exactly one input
parameter and the type is not explicitly stated in the expression. This means that

expressions that have zero or more than one input parameter will still require parentheses.

For example, the following are all valid lambda expressions, assuming that there are valid
functional interfaces that can consume them:

() -> new Duck()

d -> {return d.quack();}

(Duck d) -> d.quack()

(Animal a, Duck d) -> d.quack()

58 Chapter 2 = Design Patterns and Principles

The first lambda expression could be used by a functional interface containing a
method that takes no arguments and returns a Duck object. The second and third lambda
expressions can both be used by a functional interface that takes a Duck as input and
returns whatever the return type of quack() is. The last lambda expression can be used by
a functional interface that takes as input Animal and Duck objects and returns whatever the
return type of quack() is.

Spotting Invalid Lambdas

Can you figure out why each of the following lambda expressions is invalid and will not
compile when used as an argument to a method?

Duck d -> d.quack() // DOES NOT COMPILE
a,d -> d.quack() // DOES NOT COMPILE
Animal a, Duck d -> d.quack() // DOES NOT COMPILE

They each require parentheses ()! As we said, parentheses can be omitted only if there is
exactly one parameter and the data type is not specified.

Next, you see that Figure 2.2 has a pair of statement braces {} around the body of
the lambda expression. This allows you to write multiple lines of code in the body of the
lambda expression, as you might do when working with an if statement or while loop.
What’s tricky here is that when you add braces {}, you must explicitly terminate each
statement in the body with a semicolon;.

In Figure 2.1, we were able to omit the braces {}, semi-colon;, and return statement,
because this is a special shortcut that Java allows for single-line lambda bodies. This special
shortcut doesn’t work when you have two or more statements. At least this is consistent
with using {} to create blocks of code elsewhere in Java. When using {} in the body of the
lambda expression, you must use the return statement if the functional interface method
that lambda implements returns a value. Alternatively, a return statement is optional when
the return type of the method is void.

Let’s look at some more examples:

() -> true // © parameters
a -> {return a.startsWith("test");} // 1 parameter
(String a) -> a.startsWith("test") // 1 parameter
(int x) -> {} // 1 parameter
(int y) -> {return;} // 1 parameter

The first example takes no arguments and always returns true. The second and third
examples both take a single String value, using different syntax to accomplish the same
thing. Notice that in the first two examples we mixed and matched syntax between Figure
2.1 and Figure 2.2 by having the first example use parentheses () but no braces {} and
reversing this in the second example. The last two examples are equivalent because they
take an integer value and do not return anything.

Now let’s look at some lambda expressions that take more than one parameter:

Introducing Functional Programming 59

(a, b) -> a.startsWith("test") // 2 parameters
(String a, String b) -> a.startsWith("test") // 2 parameters

These examples both take two parameters and ignore one of them, since there is no rule
that says the lambda expression must use all of the input parameters.

Let’s review some additional lambda expressions to see how your grasp of lambda
syntax is progressing. Do you see what’s wrong with each of these lambda expressions?

a, b -> a.startsWith("test") // DOES NOT COMPILE
c -> return 10; // DOES NOT COMPILE
a -> { return a.startsWith("test") } // DOES NOT COMPILE

The first lambda needs parentheses () around the parameter list. Remember that the
parentheses are optional only when there is one parameter and it doesn’t have a type
declared. The second line uses the return keyword without using braces {}. The last line is
missing the semicolon after the return statement. The following rewritten lambda expres-
sions are each valid:

(a, b) -> a.startsWith("test")
c -> { return 10; }
a -> { return a.startsWith("test"); }

As mentioned, the data types for the input parameters of a lambda expression are
optional. When one parameter has a data type listed, though, all parameters must provide
a data type. The following lambda expressions are each invalid for this reason:

(int y, z) -> {int x=1; return y+10; } // DOES NOT COMPILE
(String s, z) -> { return s.length()+z; } // DOES NOT COMPILE
(a, Animal b, c) -> a.getName() // DOES NOT COMPILE

If we add or remove all of the data types, then these lambda expressions do compile. For
example, the following rewritten lambda expressions are each valid:
(y, z) -> {int x=1; return y+10; }
(String s, 1int z) -> { return s.length()+z; }
(a, b, ¢c) -> a.getName()

There is one more issue you might see with lambdas. We’ve been defining an argument
list in our lambda expressions. Since Java doesn’t allow us to re-declare a local variable, the
following is an issue:

(a, b) -> { int a = 0; return 5;} // DOES NOT COMPILE

We tried to re-declare a, which is not allowed. By contrast, the following line is
permitted because it uses a different variable name:

(a, b) -> { int ¢ = 0; return 5;}

60 Chapter 2 = Design Patterns and Principles

Applying the Predicate Interface
In our earlier example, we created a simple functional interface to test an Animal trait:

public interface CheckTrait {
public boolean test(Animal a);

You can imagine that we’d have to create lots of interfaces like this to use lambdas. We
want to test animals, plants, String values, and just about anything else that we come
across.

Luckily, Java recognizes that this is a common problem and provides such an interface
for us. It’s in the package java.util. function, and the gist of it is as follows:

public interface Predicate<T> {
public boolean test(T t);

That looks a lot like our method. The only difference is that it uses type T instead of
Animal. As you may remember from your OCA studies, this is the syntax for an interface
that uses a generic type. If you’re a bit out of practice with generics, don’t worry. We’ll be
reviewing generics in more detail in Chapter 3.

The result of using Predicate is that we no longer need our own functional interface.
The following is a rewrite of our program to use the Predicate class:

import java.util.function.Predicate;

public class FindMatchingAnimals {
private static void print(Animal animal, Predicate<Animal> trait) {
if(trait.test(animal))
System.out.println(animal);

public static void main(String[] args) {
print(new Animal("fish", false, true), a -> a.canHop());
print(new Animal("kangaroo", true, false), a -> a.canHop());

This is very similar to our original program, except that we wrote it with one less
interface. As you will see in Chapter 3 when we work with collections, as well as
throughout the book, Java 8 integrates the Predicate interface into a variety of methods
and APIs. In Chapter 4, we will be presenting lambda expressions based on interfaces that
take other inputs and return other data types besides boolean.

Implementing Polymorphism 61

Implementing Polymorphism

Polymorphism is the ability of a single interface to support multiple underlying forms. In
Java, this allows multiple types of objects to be passed to a single method or class. Let’s
take a look at an example of this for illustrative purposes:

public interface LivesInOcean { public void makeSound(); }

public class Dolphin implements LivesInOcean {
public void makeSound() { System.out.println("whistle"); }

public class Whale implements LivesInOcean {
public void makeSound() { System.out.println("sing"); }

public class Oceanographer {

public void checkSound(LivesInOcean animal) {
animal.makeSound();

}

public void main(String[] args) {
Oceanographer o = new Oceanographer();
o.checkSound(new Dolphin());
o.checkSound(new Whale());

This code compiles and executes without issue and yields the following output:

whistle
sing

In this sample code, our Oceanographer class includes a method named checkSound ()
that is capable of accepting any object whose class implements the LivesInOcean interface.
We can also create new objects, such as Fish or Lobster, that also implement the
LivesInOcean interface and that would be compatible with our Oceanographer class.

Polymorphism also allows one object to take on many different forms. As you may
remember from studying for the OCA exam, a Java object may be accessed using a
reference with the same type as the object, a reference that is a superclass of the object, or
a reference that defines an interface that the object implements, either directly or through
a superclass. Furthermore, a cast is not required if the object is being reassigned to a
supertype or interface of the object.

62 Chapter 2 = Design Patterns and Principles

The following example illustrates this polymorphic property:

public class Primate {
public boolean hasHair() {
return true;

public interface HasTail {
public boolean isTailStriped();

public class Lemur extends Primate implements HasTail {
public int age = 10;

public boolean isTailStriped() {
return false;

public static void main(String[] args) {
Lemur lemur = new Lemur();
System.out.println(lemur.age);

HasTail hasTail = lemur;
System.out.println(hasTail.isTailStriped());

Primate primate = lemur;
System.out.println(primate.hasHair());

This code compiles and executes without issue and yields the following output:

10
false
true

The most important thing to note about this example is that only one object, Lemur, is
created and referenced. The ability of the Lemur object to be passed as an instance of an
interface it implements, HasTa1i1, as well as an instance of one of its superclasses, Primate,
is the nature of polymorphism.

If you use a variable to refer to an object, then only the methods or variables that are
part of the variable’s reference type can be called without an explicit cast. For example, the
following snippets of code will not compile:

Implementing Polymorphism 63

HasTail hasTail = lemur;
System.out.println(hasTail.age); // DOES NOT COMPILE

Primate primate = lemur;
System.out.println(primate.isTailStriped()); // DOES NOT COMPILE

In this example, the reference hasTail has direct access only to methods defined with
the HasTail interface; therefore, it doesn’t know that the variable age is part of the object.
Likewise, the reference primate has access only to methods defined in the Primate class,
and it doesn’t have direct access to the isTailStriped() method.

Distinguishing between an Object
and a Reference

In Java, all objects are accessed by reference, so as a developer you never have direct access
to the memory of the object itself. Conceptually, though, you should consider the object

as the entity that exists in memory, allocated by the Java runtime environment. Regardless
of the type of the reference that you have for the object in memory, the object itself
doesn’t change. For example, since all objects inherit java.lang.0Object, they can all be
reassigned to java.lang.0Object, as shown in the following example:

Lemur lemur = new Lemur();

Object lemurAsObject = lemur;

Even though the Lemur object has been assigned a reference with a different type,
the object itself has not changed and still exists as a Lemur object in memory. What
has changed, then, is our ability to access methods within the Lemur class with the
lemurAsObject reference. Without an explicit cast back to Lemur, as you’ll see in the next
section, we no longer have access to the Lemur properties of the object.

We can summarize this principle with the following two rules:

1. The type of the object determines which properties exist within the object in memory.

2. The type of the reference to the object determines which methods and variables are
accessible to the Java program.

It therefore follows that successfully changing a reference of an object to a new reference
type may give you access to new properties of the object, but those properties existed before
the reference change occurred.

We illustrate this property using the previous example again, as shown in Figure 2.3. As
you can see in the figure, the same object exists in memory regardless of which reference is
pointing to it. Depending on the type of the reference, we may have access only to certain
methods. For example, the hasTail reference has access to the method isTailStriped(),
but it doesn’t have access to the variable age defined in the Lemur class. As you’ll learn in
the next section, it is possible to reclaim access to the variable age by explicitly casting the
hasTail reference to a Lemur reference.

64 Chapter 2 = Design Patterns and Principles

FIGURE 2.3 Objectvs. reference

HasTail reference

hasTail

\ Lemur object in memory

age 10

Lemur reference

lemur S

hasHair ()

Primate reference / isTailStriped()

primate 7

Casting Object References

In the previous example, we created a single instance of a Lemur object and accessed it via
superclass and interface references. Once we changed the reference type, though, we lost
access to more specific methods defined in the subclass that still exists within the object.
We can reclaim those references by casting the object back to the specific subclass it came
from:

Primate primate = lemur;

Lemur lemur2 = primate; // DOES NOT COMPILE

Lemur lemur3 = (Lemur)primate;
System.out.println(lemur3.age);

In this example, we first try to convert the primate reference back to a lemur reference,
lemur2, without an explicit cast. The result is that the code will not compile. In the second
example, though, we explicitly cast the object to a subclass of the object Primate, and we
gain access to all the methods available to the Lemur class.

Here are some basic rules to keep in mind when casting variables:

Casting an object from a subclass to a superclass doesn’t require an explicit cast.
Casting an object from a superclass to a subclass requires an explicit cast.

The compiler will not allow casts to unrelated types.

P wDd =

Even when the code compiles without issue, an exception may be thrown at runtime if
the object being cast is not actually an instance of that class.

Implementing Polymorphism 65

The third rule is important; the exam may try to trick you with a cast that the compiler
doesn’t allow. For example, we were able to cast a Primate reference to a Lemur reference
as Lemur is a subclass of Primate and therefore related.

Consider this example:

public class Bird {}

public class Fish {
public static void main(String[] args) {
Fish fish = new Fish();
Bird bird = (Fish)bird; // DOES NOT COMPILE

In this example, the classes Fish and Bird are not related through any class hierarchy;
therefore, the code will not compile.

Casting is not without its limitations. Even though two classes share a related hierar-
chy, that doesn’t mean an instance of one can automatically be cast to another. Here’s an
example:

public class Rodent {
}

public class Capybara extends Rodent {
public static void main(String[] args) {
Rodent rodent = new Rodent();

Capybara capybara = (Capybara)rodent; // Throws ClassCastException at
// runtime

This code creates an instance of Rodent and then tries to cast it to a subclass of
Rodent, Capybara. Although this code will compile without issue, it will throw a
ClassCastException at runtime since the object being referenced is not an instance of the
Capybara class. As you may recall from Chapter 1, you can use the instanceof operator
prior to casting the object to avoid throwing ClassCastException at runtime:

if(rodent instanceof Capybara) {
Capybara capybara = (Capybara)rodent;

When faced with a question on the exam that involves casting and polymorphism, be
sure to remember what the instance of the object actually is. Then focus on whether the
compiler will allow the object to be referenced with or without explicit casts.

66 Chapter 2 = Design Patterns and Principles

Understanding Design Principles

A design principle is an established idea or best practice that facilitates the software design
process. In this section, we will discuss design principles for creating Java classes and why
those principles lead to better and more manageable code bases. In general, following good
design principles leads to

= More logical code
= Code that is easier to understand
= Classes that are easier to reuse in other relationships and applications

= Code that is easier to maintain and that adapts more readily to changes in the
application requirements

Throughout this section, we will refer to the decision of how to structure class
relationships as the underlying data model. In software development, a data model is the
representation of our objects and their properties within our application and how they
relate to items in the real world. For example, we compose numerous data models of zoo
animals throughout this book, containing only the attributes with which we are concerned
in our sample programs.

Encapsulating Data

One fundamental principle of object-oriented design is the concept of encapsulating data.
In software development, encapsulation is the idea of combining fields and methods in

a class such that the methods operate on the data, as opposed to the users of the class
accessing the fields directly. In Java, it is commonly implemented with private instance
members that have public methods to retrieve or modify the data, commonly referred to
as getters and setters, respectively.

For the sake of brevity, we sometimes present classes with publically

ITE accessible instance variables in this book. The exam writers do this as
well. Although instance variables are allowed to be public, the practice is
strongly discouraged in professional software development.

The underlying idea of encapsulation is that no actor other than the class itself should
have direct access to its data. The class is said to encapsulate the data it contains and
prevent anyone from directly accessing it.

With encapsulation, a class is able to maintain certain invariants about its internal data.
An invariant is a property or truth that is maintained even after the data is modified. For
example, imagine that we are designing a new Animal class, and we have the following
design requirements:

= Each animal has a non-null, non-empty species field

= Each animal has an age field that is greater than or equal to zero

Understanding Design Principles 67

The goal of designing our Animal class would be to make sure that we never arrive at
an instance of Animal that violates one of these properties. By using private instance
members along with getter and setter methods that validate the input data, we can ensure
that these invariants remain true. In Chapter 6, “Exceptions and Assertions,” we will
describe how to test these class invariants using assertions.

An illustrative example may shed some light on this concept. We first define our Animal
class without encapsulation:

public class Animal {
public String species;
public int age;

As the Animal class is defined, it’s easy to create an instance of Animal that violates both
of our invariants:

Animal animal = new Animal();
animal.age = -100;

In this example, the first invariant is violated as soon as the object is created, with
species defaulting to null. The user then sets the age field to -100, since this field is
publically accessible, resulting in the second invariant being violated. This object may now
be passed around to methods, with users unaware that both invariants have been violated.

How can we fix this problem using encapsulation? First we need to make instance
variables private. This way, the class is the only one that can modify the data directly.
Then we need to define constructors, getters, and setters that enforce these invariants. Here
is an implementation that enforces the invariants using encapsulation:

public class Animal {
private String species;
private int age;

public Animal(String species) {
this.setSpecies(species);

public String getSpecies() {
return species;

public void setSpecies(String species) {
if(species == null || species.trim().length()==0) {
throw new IllegalArgumentException("Species is required");

68 Chapter 2 = Design Patterns and Principles

this.species = species;

public int getAge() {
return age;

public void setAge(int age) {
if(age<0) {
throw new IllegalArgumentException("Age cannot be a negative number");

}

this.age = age;

As you can see in this example, species and age are both marked private, with
public methods getSpecies() and getAge() to read the data. Next, our setSpecies()
and setAge () methods now validate the input and throw an exception if one of our
invariants is violated. Finally, a non-default constructor has been added that requires a
species value and uses the setter method to validate the input.

The advantage of this new implementation of the Animal class is that it uses encapsulation
to enforce the design principles of the class. Anytime an instance of an Animal object is
passed to a method, it can be used without requiring that its invariants be validated.

@ Real World Scenario
Blocking Direct Access to Private Class Variables

When you come across a getter or setter in practice, it is often generated and offers near-
direct access to its private variables, such as in the following example:

private String name;
public String getName() {

return name;

public void setName(String name) {

this.name = name;

Understanding Design Principles

69

At first, this may look like poor encapsulation. After all, the name field can be changed
without enforcing any rules. In actuality, this is still worlds better than allowing direct
access to the private variable name. The advantage comes from the fact that the
writers of the class can update the getter or setter method to have more complex rules
without causing the users of the class to have to recompile their code. Suppose that
we have a requirement to treat empty strings or those containing only whitespace
characters as null values. Then setName () could be rewritten as this:

public void setName(String name) {
this.name = (name == null || name.trim().length()==0) ? null: name;

}

Since the method signature setName() did not change, the callers of this method
would not have to modify and recompile their code.

What if the writer of the class had first allowed public access to the name field and
later switched the field to be private and added a public getter and setter? This would
result in all users of the class being forced to recompile their code, since the manner
in which the name field is accessed has changed. Therefore, it is considered a good
design practice always to encapsulate all variables in a class, even if there are no
established data rules, as a way to protect the data when such rules may be added in
the future.

Creating JavaBeans

Encapsulation is so prevalent in Java that there is a standard for creating classes that store

data, called JavaBeans. A JavaBean is a design principle for encapsulating data in an object

in Java. Table 2.1 lists the rules for naming JavaBeans.

TABLE 2.1 JavaBean naming conventions

Rule Example

Properties are private. private int age;
Getter for non-boolean properties begins public int getAge() {
with get. return age;

70 Chapter 2 = Design Patterns and Principles

TABLE 2.1 JavaBean naming conventions (continued)

Rule Example

Getters for boolean properties may begin public boolean 1isBird() {
with is or get. return bird;
}

public boolean getBird() {

return bird;

}

Setter methods begin with set. public void setAge(int age) {
this.age = age;

}
The method name must have a prefix of public void setNumChildren
set/get/is followed by the first letter of the (int numChildren) {
property in uppercase and followed by the this.numChildren = numChildren;
rest of the property name. }

Although boolean values use is to start their getter method, the same does not apply to instances of the wrap-
per Boolean class, which use get.

Let’s take a look at some examples. Let’s say that we have the following two private
variables defined in our class:

private boolean playing;
private Boolean dancing;

Which of the following could be correctly included in a JavaBean?

public boolean isPlaying() { return playing; }
public boolean getPlaying() { return playing; }
public Boolean isDancing() { return dancing; }

The first line is correct because it defines a proper getter for a boolean variable.
The second example is also correct, since boolean may use is or get. The third line is
incorrect, because a Boolean wrapper should start with get, since it is an object. What
about these examples?

public String name;

public String name() { return name; }

public void updateName(String n) { name = n; }
public void setname(String n) { name = n; }

Understanding Design Principles n

None of these lines follow correct JavaBean practices! The first line makes name
public, whereas it should be private. The second line does not define a proper getter
and should be getName (). The last two lines are both incorrect setters, since the first does
not start with set and the second does not have the first letter of the attribute name in
uppercase.

Applying the Is-a Relationship

In Chapter 1, you were introduced to the instanceof operator and shown how it could

be used to determine when an object is an instance of a particular class, superclass, or
interface. In object-oriented design, we describe the property of an object being an instance
of a data type as having an is-a relationship. The is-a relationship is also known as the
inheritance test.

The fundamental result of the is-a principle is that if A is-a B, then any instance of A can
be treated like an instance of B. This holds true for a child that is a subclass of any parent,
be it a direct subclass or a distant child. As we discussed with polymorphism, objects can
take many different forms.

When constructing an inheritance-based data model, it is important to apply the is-a
relationship regularly, so that you are designing classes that conceptually make sense. For
example, imagine that we have a class Cat that extends a class Pet, as shown in Figure 2.4.

FIGURE 2.4 Gooddesign—A Cat is-a Pet, because Cat extends Pet.

The parent class, Pet, has commonly used fields such as name and age. As a developer,
you might also design a class Tiger, and since tigers also have an age and a name, you
might be inclined to reuse the parent Pet class for the purposes of saving time and lines of
code, as shown in Figure 2.5.

FIGURE 2.5 Poordesign—A Tiger is-a Pet, because Tiger extends Pet.

12 Chapter 2 = Design Patterns and Principles

Unfortunately, Pet also has a cuddle () method, with the result being that you are
encouraging people to cuddle tigers! By reusing the parent Pet class, you are conceptually
stating that a Tiger is-a Pet, even though a Tiger is not a Pet. Although this example is
functionally correct and does save time and lines of code, the result of failing to apply the
is-a relationship is that you have created a relationship that violates the data model.

Let’s try to fix the problem by placing Pet and Tiger underneath a Feline parent class
and see if that solves the problem, as shown in Figure 2.6.

FIGURE 2.6 Still poor design—All Pets are now Felines.

Our class structure now works and is consistent, but as shown in Figure 2.6, if we add a
child Dog to Pet, we encounter a problem with the is-a test. A Dog is-a Pet, and a Pet is-a
Feline, but the model implies that a Dog is-a Feline, which obviously is not true.

As you saw in this example, the is-a relationship test helps us avoid creating object
models that contain contradictions. One solution in this example is to not combine
Tiger and Pet in the same model, preferring to write duplicate code rather than create
inconsistent data. Another solution might be to use the multi-inheritance properties of
interfaces and declare Pet an interface rather than a parent class, as shown in Figure 2.7.

FIGURE 2.7 Gooddesign—Pet is now an interface.

CONCHR

Understanding Design Principles 13

You see in this example that the object model is now correct using the is-a test. For
example, Cat is-a Animal, Tiger is-a Feline, Dog is-a Animal, and so forth. Pet is
now separate from the class inheritance model, but by using interfaces, we preserve the
relationship that Cat is-a Pet and Dog is-a Pet.

Applying the Has-a Relationship

In object-oriented design, we often want to test whether an object contains a particular
property or value. We refer to the has-a relationship as the property of an object having a
named data object or primitive as a member. The has-a relationship is also known as the
object composition test, described in the next section.

Let’s take a look at an example with Bird and Beak classes, as shown in Figure 2.8.

FIGURE 2.8 Birdhas-aBeak.

Bird Beak
has-a
beak: Beak color: String
rightFoot: Foot length: double

leftFoot: Foot

In this example, Bird and Beak are both classes with different attributes and values.
While they obviously fail the is-a test, since a Bird is not a Beak, nor is a Beak a Bird, they
do pass the has-a test, as a Bird has-a Beak.

Inheritance goes one step further by allowing us to say that any child of Bird must also
have a Beak. More generally, if a parent has-a object as a protected or public member,
then any child of the parent must also have that object as a member. Note that this does not
hold true for private members defined in parent classes, because private members are
not inherited in Java.

Uncovering Problems with the Data Model Using Is-a and Has-a

Sometimes relationships appear to pass the is-a test but fail when combined with the
has-a test via inheritance. For example, take a look at the following code:

public class Tail {}
public class Primate {
protected Tail tail;

14 Chapter 2 = Design Patterns and Principles

public class Monkey extends Primate { // Monkey has-a Tail since it is-a Primate

}

public class Chimpanzee extends Primate { // Chimpanzee has-a Tail since it is-a Primate

3

In this example, a Monkey is-a Primate and a Chimpanzee is-a Primate. The model also
states that a Primate has-a Tail, and through inheritance a Monkey has-a Tail and a
Chimpanzee has-a Tail. Unfortunately, chimpanzees do not have tails in the real world,
so the underlying data model is incorrect.

We saw that the model appeared to be correct when examined individually, but by
using inheritance, we uncovered a flaw in the data model. The result is that we should
remove the Tail property from the Primate class, since not all primates have tails.

Composing Objects

In object-oriented design, we refer to object composition as the property of constructing a
class using references to other classes in order to reuse the functionality of the other classes.
In particular, the class contains the other classes in the has-a sense and may delegate
methods to the other classes.

Object composition should be thought of as an alternate to inheritance and is often
used to simulate polymorphic behavior that cannot be achieved via single inheritance. For
example, imagine that we have the following two classes:

public class Flippers {
public void flap() {
System.out.println("The flippers flap back and forth");

public class WebbedFeet {
public void kick() {
System.out.println("The webbed feet kick to and fro");

Trying to relate these objects using inheritance does not make sense, as WebbedFeet are
not the same as Flippers. Instead, we can compose a new class that contains both of these
objects and delegates its methods to them, such as in the following code:

public class Penguin {
private final Flippers flippers;
private final WebbedFeet webbedFeet;

Working with Design Patterns 15

public Penguin() {
this.flippers = new Flippers();
this.webbedFeet = new WebbedFeet();

public void flap() {
this.flippers.flap();

}

public void kick() {
this.webbedFeet.kick();

As you can see, this new class Penguin is composed of instances of Flippers and
WebbedFeet. Furthermore, the heavy lifting of flap() and kick() is delegated to the
other classes, with the methods in the Penguin class being only one line long. Note that
implementations of these methods in the delegate classes are also only one line long,
although they could conceivably be much more complex.

One of the advantages of object composition over inheritance is that it tends to promote
greater code reuse. By using object composition, you gain access to other classes and
methods that would be difficult to obtain via Java’s single-inheritance model.

In our previous example, the Flippers class can be reused in classes completely
unrelated to a Penguin or a Bird, such as in a Dolphin or Turtle class. Alternatively,
if the Flippers class had been inherited from the Penguin class, then using it in other
unrelated classes would be difficult without breaking the class model or having the other
class contain an instance of a Penguin. For example, it would be silly to say a Dolphin is
inherited from a Penguin or has an instance of a Penguin class, just because a Dolphin has
Flippers, and Flippers inherits from the Penguin class.

Object composition may seem more attractive than inheritance because of its reusable
nature, but bear in mind that one of the strengths of Java is its powerful inheritance
model. Object composition still requires you to explicitly expose the underlying methods
and values manually, whereas inheritance includes protected and public members
automatically. Also, using method overloading to determine dynamically which method
to select at runtime is an extremely powerful tool for building intelligent classes. In other
words, both object composition and inheritance have their proper place in developing good
code, and in many cases it may be difficult to decide which path to choose.

Working with Design Patterns

A design pattern is an established general solution to a commonly occurring software
development problem. The purpose of a design pattern is to leverage the wealth of
knowledge of developers who have come before you in order to solve old problems that

76 Chapter 2 = Design Patterns and Principles

you may encounter easily. It also gives developers a common vocabulary in which they can
discuss common problems and solutions. For example, if you say that you wrote getters/
setters or implemented the singleton pattern, most developers will understand the structure
of your code without having to get into the low-level details.

In this chapter, we are primarily focused on creational patterns, a type of software
design pattern that manages the creation of objects within an application. Obviously,
you already know how to create objects in Java with the new keyword, as shown in the
following code:

Animal animal = new Camel();

The problem with object creation, though, lies in how you create and manage objects in
more complex systems. In this example, we were required to know exactly which type of
Animal object, in this case Camel, we wanted to create at compile time. But what if this is
not known until runtime? Furthermore, what if we wanted to create a single Animal object
in memory that is shared by all classes within our application? We will investigate these
kinds of design creation problems and their associated patterns in this section.

One thing to keep in mind as you read this section is that under the covers, the new
keyword is still used to create objects in memory. The creational patterns simply apply a
level of indirection to object creation by creating the object in some other class, rather than
creating the object directly in your application. Level of indirection is a general term for
solving a software design problem by conceptually separating the task into multiple levels.

For the OCP 8 exam, you are required to know only the first two of the four
JTE design patterns that we present in this section: the singleton pattern and

the immutable object pattern. Because of this, we will test you only on

the first two patterns in any review questions in this book. That said, we

suggest that you become familiar with all four of these patterns as they are

used throughout the Java API, as well as in later chapters of this book.

Applying the Singleton Pattern

The first creational pattern we will discuss is the singleton pattern.

Problem How do we create an object in memory only once in an application and have it
shared by multiple classes?

Motivation There are times when we want only one instance of a particular type of object
in memory. For example, we might want to manage the amount of hay available for food to
the zoo animals across all classes that use it. We could pass the same shared HayManager
object to every class and method that uses it, although this would create a lot of extra
pointers and could be difficult to manage if the object is used throughout the application.
By creating a singleton HayManager object, we centralize the data and remove the need to
pass it around the application.

Working with Design Patterns 17

Solution The singleton pattern is a creational pattern focused on creating only one
instance of an object in memory within an application, sharable by all classes and threads
within the application. The globally available object created by the singleton pattern is
referred to as a singleton. Singletons may also improve performance by loading reusable
data that would otherwise be time consuming to store and reload each time it is needed.

We present a simple implementation of our HayManager class as a singleton and discuss
its various properties:

public class HayStorage {

private int quantity = 0;
private HayStorage() {}

private static final HayStorage instance = new HayStorage();

public static HayStorage getInstance() {
return instance;

}

public synchronized void addHay(int amount) {
quantity += amount;

}

public synchronized boolean removeHay (int amount) {
if(quantity < amount) return false;
quantity -= amount;
return true;

}
public synchronized int getHayQuantity() {
return quantity;

As shown in the preceding code, singletons in Java are created as private static
variables within the class, often with the name instance. They are accessed via a single
public static method, often named getInstance(), which returns the reference to the
singleton object. Finally, all constructors in a singleton class are marked private, which
ensures that no other class is capable of instantiating another version of the class.

By marking the constructors private, we have implicitly marked the class final. Recall
that every class requires at least one constructor, with the default no-argument constructor
being added if none are provided. Furthermore, the first line of any constructor is a call to
a parent constructor with the super () command. If all of the constructors are declared
private in the singleton class, then it is impossible to create a subclass with a valid
constructor; therefore, the singleton class is effectively final.

18 Chapter 2 = Design Patterns and Principles

You might have noticed that we added the modifier synchronized to

OTE addHay (), removeHay (), and getHayQuantity (). We will discuss these
concepts in more detail in Chapter 7, “Concurrency.” For now, however,
you just need to know that they prevent two processes from running the
same method at the exact same time.

Returning to our HayStorage example, a process that wants to use this singleton first
calls getInstance() and then calls the appropriate public method:

public class LlamaTrainer {
public boolean feedLlamas(int numberOfLlamas) {
int amountNeeded = 5 * numberOfLlamas;
HayStorage hayStorage = HayStorage.getInstance();
if(hayStorage.getHayQuantity() < amountNeeded) {
hayStorage.addHay (amountNeeded + 10);
}
boolean fed = hayStorage.removeHay(amountNeeded);
if(fed) System.out.println("Llamas have been fed");
return fed;

One thing to keep in mind is that there might be multiple llama trainers at the zoo
but only one food storage location. Within our data model, this would amount to many
LlamaTrainer instances but only a single instance of HayStorage. We also checked the
return type of removeHay (), as it is possible that someone else could have taken the food
that we just restocked before we had a chance to use it.

In our first HayStorage example, we instantiated the singleton object directly in the
definition of the instance reference. We can also instantiate a singleton in two other
ways. The following example creates a singleton using a static initialization block when
the class is loaded. For simplicity, we skip defining the data methods on these classes and
present only the creation and instance retrieval logic:

// Instantiation using a static block
public class StaffRegister {
private static final StaffRegister instance;
static {
instance = new StaffRegister();
// Perform additional steps
}
private StaffRegister() {
}
public static StaffRegister getInstance() {

Working with Design Patterns 19

return instance;

// Data access methods

Both the StaffRegister class and our previous HayStorage class instantiate the singleton
at the time the class is loaded. Unlike the HayStorage class, though, the StaffRegister class
instantiates the singleton as part of a static initialization block. Conceptually, these two imple-
mentations are equivalent, since both create the singleton when the class is loaded, although the
static initialization block allows additional steps to be taken to set up the singleton after it has
been created. It also allows us to handle cases in which the StaffRegister constructor throws an
exception. Since the singleton is created when the class is loaded, we are able to mark the reference
final, which guarantees only one instance will be created within our application.

Singletons are used in situations where we need access to a single set of data throughout
an application. For example, application configuration data and reusable data caches are
commonly implemented using singletons. Singletons may also be used to coordinate access
to shared resources, such as coordinating write access to a file.

Applying Lazy Instantiation to Singletons

Another technique is to delay creation of the singleton until the first time the
getInstance () method is called:

// Lazy qinstantiation
public class VisitorTicketTracker {
private static VisitorTicketTracker qinstance;
private VisitorTicketTracker() {
}
public static VisitorTicketTracker getInstance() {
if(instance == null) {
instance = new VisitorTicketTracker(); // NOT THREAD-SAFE!
}

return instance;

// Data access methods

The VisitorTicketTracker, like our singleton classes, declares only private
constructors, creates a singleton instance, and returns the singleton with a getInstance()

80 Chapter 2 = Design Patterns and Principles

method. The VisitorTicketTracker class, though, does not create the singleton object
when the class is loaded but rather the first time it is requested by a client. Creating

a reusable object the first time it is requested is a software design pattern known as

lazy instantiation. It used often in conjunction with the singleton pattern.

Lazy instantiation reduces memory usage and improves performance when an application
starts up. In fact, without lazy instantiation, most operating systems and applications that you
run would take significantly longer to load and consume a great deal more memory, perhaps
more memory than is even available on your computer. The downside of lazy instantiation is
that users may see a noticeable delay the first time a particular type of resource is needed.

For example, you may have seen lazy instantiation in applications that you use to
write software and not even noticed it. One such freely available software development
tool, Eclipse, often demonstrates a slight delay the first time you open a Java file in an
editor window after starting the program. This delay disappears, though, when you open
additional Java files. This is an example of lazy instantiation, since Eclipse is only loading
the libraries to parse and present Java files the first time a Java file is open.

@ Real World Scenario
Singletons in Server Environments

For the purposes of the exam, singletons are always unique. When you get to writing
applications that run across multiple computers, the static singleton solution starts to
require special consideration, as each computer would have its own JVM.

In those situations, you might still use the singleton pattern, although it might be
implemented with a database or queue server rather than as a static object. However,
the discussion of which to employ is beyond the scope of the exam.

Creating Unique Singletons

To truly implement the singleton pattern, we must ensure that only one instance of the
singleton is ever created. Marking the constructor private is a good first step as it prevents
the singleton from being created by other classes, but we also need to ensure that the object
is only created once within the singleton class itself. We guaranteed this in the HayStorage
and StaffRegister classes by using the final modifier on the static reference.
Unfortunately, because we used lazy instantiation in the VisitorTicketTracker
class, the compiler won’t let us assign the final modifier to the static reference. The
implementation of VisitorTicketTracker, as shown, is not considered thread-safe in
that two threads could call getInstance() at the same time, resulting in two objects
being created. After both threads finish executing, only one object will be set and used by
other threads going forward, but the object that the two initial threads received may not
be the same.

Working with Design Patterns 81

Thread safety is the property of an object that guarantees safe execution by multiple
threads at the same time. We will discuss thread safety in Chapter 7, but for now we present a
simple solution that is compatible with lazy instantiation using the synchronized modifier:

public static synchronized VisitorTicketTracker getInstance() {
if(instance == null) {
instance = new VisitorTicketTracker();

}

return instance;

}

The getInstance() method is now synchronized, which means only one thread will be
allowed in the method at a time, ensuring that only one object is created.

@ Real World Scenario
Singletons with Double-Checked Locking

The synchronized implementation of getInstance(), while correctly preventing multiple
singleton objects from being created, has the problem that every single call to this
method will require synchronization. In practice, this can be costly and can impact
performance. Synchronization is only needed the first time that the object is created.

The solution is to use double-checked locking, a design pattern in which we first test if
synchronization is needed before actually acquiring any locks. The following is an exam-
ple rewrite of this method using double-checked locking:

private static volatile VisitorTicketTracker instance;
public static VisitorTicketTracker getInstance() {
if(instance == null) {
synchronized(VisitorTicketTracker.class) {
if(instance == null) {
instance = new VisitorTicketTracker();

}

return instance;

3

As you may have noticed, we added the volatile modifier to our singleton object. This
keyword prevents a subtle case where the compiler tries to optimize the code such that
that the object is accessed before it is finished being constructed. For the exam, you are
not required to know how volatile works or about any compiler optimizations.

82 Chapter 2 = Design Patterns and Principles

This solution is better than our previous version, as it performs the synchronization
step only when the singleton does not exist. If our singleton is accessed thousands of
times over many hours or days, this means that only the first few calls would require
synchronization, and the rest would not.

Creating Immutable Objects

The next creational pattern we will discuss is the immutable objects pattern.
Problem How do we create read-only objects that can be shared and used by multiple classes?

Motivation Sometimes we want to create simple objects that can be shared across multiple
classes, but for security reasons we don’t want their value to be modified. We could copy the
object before sending it to another method, but this creates a large overhead that duplicates
the object every time it is passed. Furthermore, if we have multiple threads accessing the same
object, we could run into concurrency issues, as you will see in Chapter 7.

Solution The immutable object pattern is a creational pattern based on the idea of
creating objects whose state does not change after they are created and can be easily shared
across multiple classes. Immutable objects go hand and hand with encapsulation, except
that no setter methods exist that modify the object. Since the state of an immutable object
never changes, they are inherently thread-safe.

You've actually been working with immutable objects throughout your

TE OCA studies. You may remember that the String class was called
immutable. In this section, we’ll show you how to define your own
immutable classes.

Applying an Immutable Strategy

Although there are a variety of techniques for writing an immutable class, you should be
familiar with a common strategy for making a class immutable for the exam:

1. Use a constructor to set all properties of the object.
Mark all of the instance variables private and final.
Don’t define any setter methods.

Don’t allow referenced mutable objects to be modified or accessed directly.

g & W DN

Prevent methods from being overridden.

The first rule defines how we create the immutable object, by passing the information
to the constructor, so that all of the data is set upon creation. The second and third rules
are straightforward, as they stem from proper encapsulation. If the instance variables are
private and final, and there are no setter methods, then there is no direct way to change
the property of an object. All references and primitive values contained in the object are set
at creation and cannot be modified.

Working with Design Patterns 83

The fourth rule requires a little more explanation. Let’s say that you have an immutable
Animal object, which contains a reference to a List of the animal’s favorite foods, as
shown in the following example:

import java.util.*

public final class Animal {
private final List<String> favoriteFoods;

public Animal(List<String> favoriteFoods) {
if(favoriteFoods == null) {
throw new RuntimeException("favoriteFoods is required");

}

this.favoriteFoods = new ArrayList<String>(favoriteFoods);

public List<String> getFavoriteFoods() { // MAKES CLASS MUTABLE!
return favoriteFoods;

In order to ensure that the favoriteFoods List is not null, we validate it in the
constructor and throw an exception if it is not provided. The problem in this example is
that the user has direct access to the List defined in our instance of Animal. Even though
they can’t change the List object to which it points, they can modify the items in the List,
for example, deleting all of the items by calling getFavoriteFoods().clear(). They
could also replace, remove, or even sort the List.

The solution, then, is never to return that List reference to the user. More generally
stated, you should never share references to a mutable object contained within an
immutable object. If the user does need access to the data in the List, either create
wrapper methods to iterate over the data or create a one-time copy of the data that is
returned to the user and never stored as part of the object. In fact, the Collections
API includes the Collections.unmodifiableList() method, which does exactly this.
The key here is that none of the methods that you create should modify the mutable
object.

Returning to our five rules, the last rule is important because it prevents someone
from creating a subclass of your class in which a previously immutable value now
appears mutable. For example, they could override a method that modifies a different
variable in the subclass, essentially hiding the private variable defined in the parent
class. The simplest solution is to mark the class or methods with the final modifier,
although this does limit the usage of the class. Another option is to make the con-
structor private and apply the factory pattern, which we will discuss later in this
chapter.

Here is an example of an immutable Animal class:

84 Chapter 2 = Design Patterns and Principles

import java.util.*

public final class Animal {
private final String species;
private final int age;
private final List<String> favoriteFoods;

public Animal(String species, int age, List<String> favoriteFoods) {
this.species = species;
this.age = age;
if(favoriteFoods == null) {
throw new RuntimeException("favoriteFoods 1is required");
}

this.favoriteFoods = new ArrayList<String>(favoriteFoods);

public String getSpecies() {
return species;

public int getAge() {
return age;

public int getFavoriteFoodsCount() {
return favoriteFoods.size();

public String getFavoriteFood(int index) {
return favoriteFoods.get(index);

Does this sample follow all five rules? Well, all fields are marked private and final,
and the constructor sets them upon object creation. Next, there are no setter methods and
the class itself is marked final, so the methods cannot be overridden by a subclass. The
class does contain a mutable object, List, but no references to the object are publically
available. We provide two methods for retrieving the total number of favorite foods as
well as a method to retrieve a food based on an index value. Note that String is given to
be immutable, so we don’t have to worry about any of the String objects being modified.
Therefore, all five rules are preserved and instances of this class are immutable.

Working with Design Patterns 85

Handling Mutable Objects in the Constructors of Inmutable Objects

You may notice that we created a new ArrayList in the Animal constructor. This is
absolutely important to prevent the class that initially creates the object from maintaining
a reference to the mutable List used by Animal. Consider if we had just done the
following in the constructor:

this.favoriteFoods = favoriteFoods;

With this change, the caller that creates the object is using the same reference as the
immutable object, which means that it has the ability to change the List! It is important
when creating immutable objects that any mutable input arguments are copied to the
instance instead of being used directly.

“Modifying” an Immutable Object

How do we modify immutable objects if they are inherently unmodifiable? The answer is,
we can’t! Alternatively, we can create new immutable objects that contain all of the same
information as the original object plus whatever we wanted to change. This happens every
time we combine two strings:

String firstName = "Grace";
String fullName = firstName + " Hopper";

In this example, the firstName is immutable and is not modified when added to the
fullName, which is also an immutable object. We can also do the same thing with our
Animal class. Imagine that we want to increase the age of an Animal by one. The following
creates two Animal instances, the second using a copy of the data from the first instance:

// Create a new Animal instance
Animal lion = new Animal("lion", 5, Arrays.asList("meat","more meat"));

// Create a new Animal instance using data from the first dinstance

List<String> favoriteFoods = new ArraylList<String>();

for(int i=0; i<lion.getFavoriteFoodsCount(); i++) {
favoriteFoods.add(lion.getFavoriteFood(i));

}

Animal updatedLion = new Animal(lion.getSpecies(), lion.getAge()+1,
favoriteFoods);

Since we did not have direct access to the favoriteFoods mutable List, we had to
copy it using the methods available in the immutable class. We could also simplify this by
defining a method in Animal that returns a copy of the favoriteFood List, provided that

86 Chapter 2 = Design Patterns and Principles

the caller understands that modifying this copied List does not change the original Animal
object in any way.

)/ As we stated earlier, you are not currently required to know how to
AéTE implement the builder design pattern and the factory design pattern,
although we recommend that at least you be familiar with them, as it will
help you to understand techniques used in later parts of the book.

Using the Builder Pattern

The third creational pattern we will discuss is the builder pattern.

Problem How do we create an object that requires numerous values to be set at the time
the object is instantiated?

Motivation As our data objects grow in size, the constructor may grow to contain many
attributes. For example, in our most recent immutable Animal class example, we had three
input parameters: species, age, and favoriteFoods. If we want to add five new attributes
to the object, we’d have to add five new values in the constructor. Every time we add a
parameter, the constructor grows! Users who reference our object would also be required
to update their constructor calls each time that the object was modified, resulting in a class
that would be difficult to use and maintain. Alternatively, we could add a new constructor
each time we add a parameter, but having too many constructors can be quite difficult to
manage in practice.

One solution is to use setter methods instead of the constructor to configure the object,

but this doesn’t work for immutable objects since they can’t be modified after creation.

For mutable objects, it could also lead to class invariants being temporarily broken. For
example, the attributes of the class may be dependent on each other, and setting them one
at a time may expose a state where the object is not properly configured.

@ Real World Scenario
Introducing Anti-Patterns

The problem of a constructor growing too large actually has a name, referred to as the
telescoping constructor anti-pattern. An anti-pattern is a common solution to a reoccur-
ring problem that tends to lead to unmanageable or difficult-to-use code. Anti-patterns
often appear in complex systems as time goes on, when developers implement a series
of successive changes without considering the long-term effects of their actions.

For example, with the telescoping constructor anti-pattern, the class may start off with
only two parameters in the constructor. Another developer may come in and added

Working with Design Patterns 87

another parameter, thinking “It’s only one more!” A third developer may update the class
and add a fourth parameter, and so on, until the class has 50 or 60 parameters in the
constructor and is in desperate need of rewriting, also called refactoring.

The reason why this is an anti-pattern is that each time the class is modified, the
developer is only doing minor damage to the class. However, it eventually grows out
of control. If the class is used in a number of important places throughout the system,
refactoring it may become difficult—in some cases nearly impossible. Design patterns
are often written to help prevent anti-patterns from forming.

Solution The builder pattern is a creational pattern in which parameters are passed to a
builder object, often through method chaining, and an object is generated with a final build
call. Tt is often used with immutable objects, since immutable objects do not have setter
methods and must be created with all of their parameters set, although it can be used with
mutable objects as well.

The following is an AnimalBuilder class, which uses our immutable Animal class:

import java.util.*

public class AnimalBuilder {
private String species;
private int age;
private List<String> favoriteFoods;

public AnimalBuilder setAge(int age) {
this.age = age;
return this;

public AnimalBuilder setSpecies(String species) {
this.species = species;
return this;

public AnimalBuilder setFavoriteFoods(List<String> favoriteFoods) {
this.favoriteFoods = favoriteFoods;
return this;

public Animal build() {

88 Chapter 2 = Design Patterns and Principles

return new Animal(species,age,favoriteFoods);

At first glance, this code might look a lot like the immutable Animal class, so much so
that it seems like we redefined it exactly. But there are some important differences. First,
this class is mutable, whereas the Animal class is immutable. We can modify this class as
we build it, and the result of the build method will be an immutable object. In some ways,
using the builder pattern is analogous to taking a mutable object and making it read-only.

The next thing that you might notice is that all of the setter methods return an instance
of the builder object this. Builder methods are commonly chained together, often callable in
any order. For example, the following two code snippets are both valid uses of this builder:

AnimalBuilder duckBuilder = new AnimalBuilder();
duckBuilder

.setAge(4)

.setFavoriteFoods (Arrays.asList("grass","fish")).setSpecies("duck");
Animal duck = duckBuilder.build();

Animal flamingo = new AnimalBuilder ()
.setFavoriteFoods(Arrays.asList("algae","insects"))
.setSpecies("flamingo").build();

Notice that in the second Animal example, we never even save an instance to our builder
object! Oftentimes, builder objects are used once and then discarded. Finally, we create
our target object build method, usually named build(), allowing it to interact with the
Animal’s constructor directly.

You might also notice that we never explicitly set the age in the second example. In this
scenario, age may not be required, although we could certainly write our build() method to
throw an exception if certain required fields are not set. Alternatively, the build() method
may also set default values for anything the user failed to specify on the builder object.

The primary advantage of the builder pattern is that, over time, this approach leads to
far more maintainable code. If a new optional field is added to the Animal class, then our
code that creates objects using the AnimalBuilder class will not need to be changed. In
practice, a builder object often supports dozens of parameters, only a handful of which
may be set by users of the builder at a given time.

Builder Pattern and Tightly Coupled Code

As stated, the AnimalBuilder class looks a lot like our target Animal class. Furthermore, it
requires direct knowledge of how to use the Animal constructor, mentioned earlier, which
could grow to 50 or 60 parameters over time. In this manner, the builder class and target
class are considered tightly coupled. Tight coupling is the practice of developing coupled
classes that are highly dependent, such that a minor change in one class may greatly

Working with Design Patterns 89

impact the other class. Alternatively, loose coupling is the practice of developing coupled
classes with minimum dependencies on one another.

Although loose coupling is preferred in practice, tight coupling is required here so that
callers of the AnimalBuilder class never have to use the Animal class constructor directly,
60 parameters and all.

In practice, a builder class is often packaged alongside its target class, either as a static
inner class within the target class or within the same Java package. One advantage of
packing them together is that if one is changed, then the other can be quickly updated.
Another advantage is that writers of the target class can then choose to make the
constructor a private or default package, forcing the user to rely on the builder object

to obtain instances of the target class. For example, if the Animal class did not have a
public constructor, programs calling it from other packages would be required to use the
AnimalBuilder class to create instances of Animal.

Creating Objects with the Factory Pattern

The final creational pattern we will discuss is the factory pattern.

Problem How do we write code that creates objects in which the precise type of the object
may not be known until runtime?

Motivation As you saw with the builder pattern, object creation can be quite complex.
We’d like some way of encapsulating object creation to deal with the complexity of
object creation, including selecting which subclass to use, as well as loosely coupling the
underlying creation implementation.

Solution The factory pattern, sometimes referred to as the factory method pattern, is a
creational pattern based on the idea of using a factory class to produce instances of objects
based on a set of input parameters. It is similar to the builder pattern, although it is focused
on supporting class polymorphism.

Factory patterns are often, although not always, implemented using static methods
that return objects and do not require a pointer to an instance of the factory class. It is
also a good coding practice to postfix the class name with the word Factory, such as in
AnimalFactory, ZooFactory, and so forth.

Let’s try an example of the factory pattern involving zoo animals and food. Imagine
a zookeeper who needs to feed a variety of animals in the zoo different types of foods.
Some animals eat specialized food, while others share the same type food. Furthermore, a
quantity value is associated with each distribution of food to an animal. We illustrate this
example with the following class definitions:

public abstract class Food {
private int quantity;
public Food(int quantity) {

90 Chapter 2 = Design Patterns and Principles

this.quantity = quantity;
}
public int getQuantity() {
return quantity;

}

public abstract void consumed();

public class Hay extends Food {
public Hay(int quantity) {
super (quantity);
}
public void consumed() {
System.out.println("Hay eaten: "+getQuantity());

public class Pellets extends Food {
public Pellets(int quantity) {
super (quantity);
}
public void consumed() {
System.out.println("Pellets eaten: "+getQuantity());

public class Fish extends Food {
public Fish(int quantity) {
super (quantity);
}
public void consumed() {
System.out.println("Fish eaten: "+getQuantity());

Now, let’s define a FoodFactory using the factory pattern that returns a food type
based on some set of inputs, as shown in the following code and in Figure 2.9. For
simplicity, we will use a java.lang.String representing the animal name as input,
although you could certainly expand the data model using a class type or set of input
parameters.

Working with Design Patterns 91

FIGURE 2.9 FoodFactory data model

getFood(

o OG>
produces

inherits

public class FoodFactory {
public static Food getFood(String animalName) {
switch(animalName) {
case "zebra": return new Hay(100);
case "rabbit": return new Pellets(5);
case "goat": return new Pellets(30);
case "polar bear": return new Fish(10);

// Good practice to throw an exception if no matching subclass could be found
throw new UnsupportedOperationException("Unsupported animal: "+animalName);

}
public class ZooKeeper {
public static void main(String[] args) {
final Food food = FoodFactory.getFood("polar bear");
food.consumed() ;

Depending on the value of animalName, we return different types of food for use in our
factory. The factory pattern gives us a number of features. First of all, different animals
can share the same food, such as goat and rabbit both eating pellets but with varying
quantities. Next, notice in our ZooKeeper method that we don’t care about the particular
type of food that we get, as long as it implements the Food interface. This loose coupling
of ZooKeeper and Food allows us to change the rules in the FoodFactory at a later date
without requiring any code changes to our ZooKeeper class. Of course, the developer could
cast the object to a particular subclass of Food after it is returned from the FoodFactory,
although that practice is generally discouraged when using a factory pattern as it creates a
tightly coupled solution.

92 Chapter 2 = Design Patterns and Principles

Factory Pattern and Default Class Constructors

You may notice that in this example all of the Food class and subclass constructors are
marked public. We obviously could not mark the constructors private, as this would
prevent the FoodFactory class from creating any instances of Food classes. We could also
not mark them protected, since the FoodFactory class is not a subclass of any of the Food
classes, nor should it be.

The only problem with marking them public is that any class could bypass our factory
pattern and create instances of the Food classes directly. If we wanted to tighten our
access control, we could have declared these constructors with default or package-level
access in which there is no modifier.

The advantage of using default access is that it forces any class outside the package into
using the FoodFactory class to create an instance of a Food object, thereby preventing

it from instantiating a Food object directly. The only limitation is that our FoodFactory
and all of our Food classes must be set in the same Java package. If a Food class exists

in a different package than FoodFactory, and we want to use FoodFactory to create an
instance of it, then it must provide a public method.

As an alternative to using a factory pattern, a developer could implement a set of Animal
classes and define a getFood () method in each class that returns a Food object. The limita-
tion in this solution is that it tightly couples what an animal is and what food an animal
eats. For example, if a particular food were no longer available, all of the many classes that
use that particular food would need to be changed. By using a factory pattern, we create
loosely coupled code that is more resistant to changes in animal feeding behaviors.

Design Patterns: Elements of Reusable Object-Oriented Software

If you have enjoyed this chapter on software design patterns, we recommend that you
read the book Design Patterns (Addison-Wesley Professional, 1994), whose authors
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides are often referred to
humorously as the “Gang of Four.”

Design Patterns is considered one of the most influential software engineering books
ever written, and it established the foundation of many of the design patterns that

we use today. Although we have reviewed everything you need to know to answer
questions about design patterns on the OCP exam, the value of the knowledge offered in
Design Patterns on building better and more powerful software applications cannot be
overstated.

Exam Essentials 93

Summary

One of the primary goals of this chapter was to teach you how to write better code. We
demonstrated techniques for designing class structures that scale naturally over time, integrate
well with other applications, and are easy for other developers to read and understand.

We started off with a brief review of interfaces from your OCA studies showing how to
declare, implement, and extend them. We then moved on to functional programming and
reviewed the various syntax options available for defining functional interfaces and writing
lambda expressions. Given the prevalence of lambda expressions throughout Java 8, you
absolutely need to practice writing and using lambda expressions before taking the exam.
We concluded the discussion with a review of the generics-based Predicate interface and
showed how it can be used in place of your own functional interface. We will return to
lambdas and streams in Chapter 3 and Chapter 4 in much greater detail.

This chapter introduced the concept of polymorphism, which is central to the Java
language, and showed how objects can be accessed in a variety of forms. Make sure
that you understand when casts are needed for accessing objects, and be able to spot the
difference between compile-time and runtime cast problems.

In the design principles section, we taught you how to encapsulate your classes in Java
properly, allowing you to enforce class invariants in your data model. We then described
the is-a and has-a principles and showed how you can apply them to your data model.
Finally, we introduced the technique of creating class structures using object composition
that rely on the has-a principle as an alternative to inheritance.

We completed this chapter by explaining what a design pattern is and presenting you with
four well-known design patterns. Design patterns provide you with a way to solve a problem
that you encounter using solutions that other developers have already built and generalized.
The singleton pattern is excellent for managing a single shared instance of an object within
an application. The immutable object pattern is useful for creating read-only objects that
cannot be modified by other classes. The builder pattern solves the problem of how to
create complex objects cleanly, and it is often used in conjunction with the immutable object
pattern. Finally, the factory pattern is useful for creating various objects without exposing
the underlying constructors and complex rules for selecting a particular object subtype.

Exam Essentials

Be able to write code that declares, implements, and/or extends interfaces. An interface
is like an abstract class that defines a set of public abstract methods, which classes
implementing the interface must provide. A class may implement multiple interfaces as well
as extend classes that implement interfaces, allowing for limited multiple inheritance in
Java. Interfaces may extend other interfaces, although they may not extend a class and vice
versa. Interfaces may also contain public static final constant values, public static
methods, and public default methods.

94 Chapter 2 = Design Patterns and Principles

Know how to create and recognize a functional interface. A functional interface is

one that has exactly one abstract method. It is the primary manner in which lambda
expressions are passed between methods. Java includes a Predicate interface for testing a
generic type and returning a boolean expression.

Be able to write valid lambda expressions. A lambda expression is like an anonymous
method that can be passed to a method, relying on deferred execution to process the
expression at a later time. It has various syntax options, both long and short. Lambda
expressions are used throughout Java 8 and in numerous questions on the exam.

Understand polymorphism. An object in Java may take on a variety of forms, in part
depending on the reference used to access the object. The type of the object determines
which properties exist within the object in memory, whereas the type of the reference to

the object determines which methods and variables are accessible to the Java program.

An instance can be automatically cast to a superclass or interface reference without an
explicit cast. Alternatively, an explicit cast is required if the reference is being narrowed to a
subclass of the object. The Java compiler doesn’t permit casting to unrelated types. Finally,
you should be able to distinguish between compile-time casting errors and those that will
not occur until runtime, throwing a ClassCastException.

Understand the importance of design principles and design patterns. A design principle is an
established idea or best practice that facilitates the software design process. A design pattern is
an established general solution to a commonly occurring software development problem.

Know how to implement encapsulation. Encapsulation is based on the idea of combining
fields and methods in a class such that the methods operate on the data, as opposed to users
of the class accessing the fields directly. It can be used to prevent users from creating object
states that violate class invariants. In Java, it is often implemented with JavaBeans, using
the private access modifier on instance variables and public getter and setter methods.

Be able to apply the is-a and has-a tests. The is-a test is used to test whether an object is
of a particular type, and it is used for both classes and interfaces. The has-a test is used to
determine whether an object contains a reference to another object as an instance property.

Be able to apply object composition and distinguish it from inheritance. Object
composition is the idea of creating a class by connecting other classes as members using
the has-a principle. Inheritance is the idea of creating a class that inherits all of its reusable
methods and objects from a parent class. Both are used to create complex data models,
each with its own advantages and disadvantages.

Be able to apply creational patterns including the singleton pattern and the immutable
object pattern. The singleton and immutable object patterns are both types of creational
patterns, which are design patterns that facilitate the creation of objects with an
application. The singleton pattern solves the problem of how to create a single instance

of an object in memory that multiple classes can share by centralizing the object-creation
mechanisms. The immutable object pattern is used to create read-only objects that cannot
be modified by other classes. Although immutable objects cannot be modified, they can be
copied to new immutable objects with the updated information.

Review Questions 95

Review Questions

Which of the following statements about design principles and design patterns are true?

(Choose all that apply.)

A.
B.
C.

D.
E.

1
2
3
4
5:
6
7
8
9

10:

Mmoo ® >

:}
: public interface CanClimbTrees extends CanClimb {}

t}
¢ public class EasternChipmunk extends Chipmunk {

A design principle is focused on solving a specific commonly occurring problem.
Design principles and design patterns are the same thing.

Design principles are often applied throughout an application, whereas design patterns
are applied to solve specific problems.

Design patterns can only be applied to static classes.

Design principles and design patterns tend to produce code that is easier to maintain
and easier for other developers to read.

What is the result of the following code?

: public interface CanClimb {

public abstract void climb();

public abstract class Chipmunk implements CanClimbTrees {
public abstract void chew();

public void chew() { System.out.println("Eastern Chipmunk is Chewing"); }
}

It compiles and runs without issue.

The code will not compile because of line 2.
The code will not compile because of line 4.
The code will not compile because of line 5.
The code will not compile because of line 8.

It compiles but throws an exception at runtime.

Which of the following are valid functional interfaces? (Choose all that apply.)

public interface Climb {

}

public int climb();

public abstract class Swim {

}

public abstract Object swim(double speed, int duration);

public interface ArcticMountainClimb extends MountainClimb {

public default int getSpeed();

96 Chapter 2 = Design Patterns and Principles

public interface MountainClimb extends Climb {}

Climb
Swim
ArcticMountainClimb

MountainClimb

moowp»

None of these are valid functional interfaces.

4. Which of the following are valid lambda expressions? (Choose all that apply.)

A. () > "

B. x,y -> x+y

C. (Coyote y) -> return 0;
D. (Camel c) -> {return;}
E. Wolf w -> 39

F. () >

G.

(Animal z, m) -> a

5. What are some of the properties of using the singleton pattern? (Choose all that apply.)
Singleton object can be replaced with encapsulated setter method.

Requires constructor of singleton class to be private.

Singleton object must be named instance.

Singleton object may be private or protected.

Ensures that there is only one instance of an object in memory.

mmo o w>

Requires a public static method to retrieve the instance of the singleton.
6. What is the result of the following class?

import java.util.function.*;
public class Panda {
int age;
public static void main(String[] args) {
Panda pl = new Panda();
pl.age = 1;
check(pl, p -> p.age < 5); // hl
}
private static void check(Panda panda, Predicate<Panda> pred) { // h2
String result = pred.test(panda) ? "match": "not match"; // h3
System.out.print(result);
)

mmo o ®>

Review Questions 97

match

not match

Compiler error on line h1.
Compiler error on line h2.
Compile error on line h3.

A runtime exception is thrown.

What changes need to be made to make the following immutable object pattern correct?
(Choose all that apply.)

import java.util.List;
public class Seal {

—

moow>»

String name;

private final List<Seal> friends;

public Seal(String name, List<Seal> friends) {
this.name = name;
this.friends = friends;

}
public String getName() { return name; }
public List<Seal> getFriends() { return friends; }

None; the immutable object pattern is properly implemented.
Have Seal implement the Immutab'le interface.

Mark name final and private.

Add setters for name and List<Seal> friends.

Replace the getFriends() method with methods that do not give the caller direct
access to the List<Seal> friends.

Change the type of List<Seal> to List<Object>.
Make a copy of the List<Seal> friends in the constructor.
Mark the Seal class final.

Which of the following are true of interfaces? (Choose all that apply.)

mmoow>

They can extend other classes.

They cannot be extended.

They enable classes to have multiple inheritance.
They can only contain abstract methods.
They can be declared final.

All members of an interface are public.

98 Chapter 2 = Design Patterns and Principles

9. What changes need to be made to make the following singleton pattern correct? (Choose all
that apply.)

public class CheetahManager {
public static CheetahManager cheetahManager;
private CheetahManager() {}
public static CheetahManager getCheetahManager () {
if(cheetahManager == null) {
cheetahManager = new CheetahManager();

}

return cheetahManager;

None; the singleton pattern is properly implemented.

Rename cheetahManager to instance.

Rename getCheetahManager () to getInstance().

Change the access modifier of cheetahManager from public to private.
Mark cheetahManager final.

mmo o ® >

Add synchronized to getCheetahManager ().
10. What is the result of the following code?

public interface CanWalk {
default void walk() { System.out.println("wWalking"); }

}

public interface CanRun {
public default void walk() { System.out.println("Walking"); }
public abstract void run();

}
public interface CanSprint extends CanWalk, CanRun {

© 0o N o U b W N =

void sprint();

=
(o]

:

The code compiles without issue.
The code will not compile because of line 5.
The code will not compile because of line 6.

The code will not compile because of line 8.

moom»

The code will not compile because of line 9.

11.

12.

Review Questions 99

Which lambda can replace the MySecret class to return the same value? (Choose all that apply.)

public interface Secret {
String magic(double d);

public class MySecret implements Secret {
public String magic(double d) {
return "Poof";

}
}
A. caller((e) -> "Poof");
B. caller((e) -> {"Poof"});
C. caller((e) -> { String e = ""; "Poof" });
D. caller((e) -> { String e = ""; return "Poof"; });
E. caller((e) -> { String e = ""; return "Poof" });
F. caller((e) -> { String f = ""; return "Poof"; });

What is the result of the following code?

public interface Climb {
boolean isTooHigh(int height, int limit);
}
public class Climber {
public static void main(String[] args) {
check((h, 1) -> h.toString(), 5); // x1
}
private static void check(Climb climb, int height) {
if (climb.isTooHigh(height, 10)) // x2
System.out.println("too high");
else System.out.println("ok");
I

ok

too high

Compiler error on line x1.
Compiler error on line x2.

Compiler error on a different line.

mmoow»

A runtime exception is thrown.

100

13.

14.

15.

16.

Chapter 2 = Design Patterns and Principles

Which of the following are properties of classes that define immutable objects? (Choose all
that apply.)

They don’t define any getter methods.

All of the instance variables marked private and final.
They don’t define any setter methods.

They mark all instance variables static.

They prevent methods from being overridden.

mmo o ® >

All getter methods are marked synchronized.

Which of the following statements can be inserted in the blank line so that the code will
compile successfully? (Choose all that apply.)

public interface CanHop {}
public class Frog implements CanHop {
public static void main(String[] args) {
frog = new TurtleFrog();

}

public class BrazilianHornedFrog extends Frog {}
public class TurtleFrog extends Frog {}

Frog

TurtleFrog
BrazilianHornedFrog
CanHop

Object

Long

mmo o ® >

Which of the following statements about polymorphism are true? (Choose all that apply.)
A. A reference to an object may be cast to a subclass of the object without an explicit cast.

B. If a method takes a class that is the superclass of three different object references, then
any of those objects may be passed as a parameter to the method.

C. A reference to an object may be cast to a superclass of the object without an explicit cast.
All cast exceptions can be detected at compile time.

E. By defining a public instance method in the superclass, you guarantee that the specific
method will be called in the parent class at runtime.

Choose the correct statement about the following code:

1: public interface Herbivore {
2: int amount = 10;
3: public static void eatGrass();

17.

18.

19.

moowm»

F.

~N o 0 b

Review Questions 101

public int chew() {
return 13;

It compiles and runs without issue.

The code will not compile because of line 2.

The code will not compile because of line 3.

The code will not compile because of line 4.

The code will not compile because of lines 2 and 3.

The code will not compile because of lines 3 and 4.

Which of the following are properties of classes that are properly encapsulated as a
JavaBean? (Choose all that apply.)

mmo o ®w >

All instance variables are marked final.

boolean instance variables are accessed with s or get.
All instance variables are marked private.

They implement the JavaBean interface.

Variables are created using lazy instantiation.

The first letter of the any getter/setter, after the get, set, or is prefix, must be
uppercase.

Which of the following statements about inheritance and object composition are correct?
(Choose all that apply.)

A. [Inheritance supports access to protected variables.

B. Object composition tends to promote greater code reuse than inheritance.

C. Inheritance relies on the has-a principle.

D. Object composition supports method overriding at runtime.

E. Object composition requires a class variable to be declared public or accessible from a
public method to be used by a class in a different package.

F. Object composition is always preferred to inheritance.

Which three scenarios would best benefit from using a singleton pattern? (Choose all

three.)

A. Create read-only objects that are thread-safe.

mmpDoDow

Manage a reusable cache of objects.

Ensure that all objects are lazily instantiated.

Manage write access to a log file.

Provide central access to application configuration data.

Allow multiple instances of a static object to be managed in memory.

102 Chapter 2 = Design Patterns and Principles

20. Choose the correct statement about the following code:

1: public interface CanFly {

2 void fly();

3: }

4: dnterface HasWings {

5: public abstract Object getWingSpan();
6: }

7: abstract class Falcon implements CanFly, HasWings {
8: }

It compiles without issue.

The code will not compile because of line 2.

The code will not compile because of line 4.

The code will not compile because of line 5.

The code will not compile because of lines 2 and 3.

mmo o ® >

The code will not compile because the class Falcon doesn’t implement the interface
methods.

Generics and
Collections

THE OCP EXAM TOPICS COVERED IN THIS
CHAPTER INCLUDE THE FOLLOWING:

v Generics and Collections

Create and use a generic class

Create and use ArraylList, TreeSet, TreeMap and ArrayDeque
objects

Use java.util.Comparator and java.lang.Comparable interfaces
Iterate using forEach methods on Streams and List

Use method references with Streams

v Advanced Java Class Design

Create and use lambda expressions

v Generics and Collections

Filter a collection using lambda expressions

v Java Stream API

Use of merge()and flatMap () methods of the Stream API

You learned about ArrayList on the OCA. This chapter cov-
ers the rest of the Java Collections Framework that you need
Basi Y to know for the exam. This includes other lists, sets, queues,
and maps. The thread-safe collection types will be discussed in Chapter 7, “Concurrency.”

We will also discuss how to create your own classes and methods that use generics so
that the same class can be used with many types. You’ll learn how to customize searching
and sorting using Comparable and Comparator. We will end with some methods that use
functional interfaces, such as forEach() and merge().

In the next chapter, we will cover the Stream API. Note that the exam objectives are
sloppy and sometimes use “stream” to include “stream” and “lambda.” The merge ()
method is on Map and not really a stream API.

Reviewing OCA Collections

The Java Collections Framework includes classes that implement List, Map, Queue, and Set.
On the OCA, you saw one such class. The class ArrayList implements the interface List.
You will learn about more of these later in this chapter. You also saw arrays on the OCA,
such as int[]. An array is not part of the Collections Framework. Since sorting and searching
are similar between lists and arrays, both are covered on the exam. Furthermore, since the
OCP is cumulative, you are still expected to know how to work with arrays from the OCA.

In the following sections, we will review arrays, ArrayLists, wrapper classes, autobox-
ing, the diamond operator, searching, and sorting.

Array and ArrayList

An ArrayList is an object that contains other objects. An ArrayList cannot contain
primitives. An array is a built-in data structure that contains other objects or primitives.
The following code reviews how to use an array and ArraylList:

List<String> list = new ArrayList<>(); // empty list
list.add("Fluffy"); // [Fluffy]
list.add("Webby"); // [Fluffy, Webby]

String[] array = new String[list.size()]; // empty array

Reviewing OCA Collections 105

array[0] = list.get(1l); // [Webby]
array[1] = list.get(0); // [Webby, Fluffy]
for (int i = 0; i < array.length; i++)

System.out.print(array[i] + "-");

The output is Webby-Fluffy-. This code reminds us that Java counts starting with 0 for
indexes. It also reminds us that we access elements in ArrayLists with get(), and we check
the number of elements with size(). By contrast, we access elements in arrays using brack-
ets and check the number of elements with the length variable.

Now, let’s review the link created when converting between an array and ArrayList.

4: String[] array = { "gerbil", "mouse" }; // [gerbil, mouse]

5: List<String> list = Arrays.asList(array); // returns fixed size list
6: list.set(1, "test"); /] [gerbil, test]

7: array[0] = "new"; // [new, test]

8: String[] array2 = (String[]) list.toArray(); // [new, test]

9: list.remove(1); // throws UnsupportedOperationException

Line 5 converts an array to a List. It happens to be an implementation of List that
is not an ArrayList. Remember that a List is like a resizable array. It makes sense to
convert an array to a List. It doesn’t make sense to convert an array to a Set. You still
can do so, however, although it takes an extra step. You’d have to convert the array to a
List and then the List to a Set. Lines 6 and 7 show that you can change the elements in
either the array or the List. Changes are reflected in both, since they are backed by the
same data.

Implementations of List are allowed to add their own behavior. The implementation
used when calling asList () has the added feature of not being resizable but honoring
all of the other methods in the interface. Line 8 converts the List back to an array.
Finally, line 9 shows that 1ist is not resizable because it is backed by the underlying
array.

Searching and Sorting

Our last topic to review is searching and sorting. Do you remember why this works the way
it does?

11: int[] numbers = {6,9,1,8};

12: Arrays.sort(numbers); // [1,6,8,9]
13: System.out.println(Arrays.binarySearch(numbers, 6)); // 1

14: System.out.println(Arrays.binarySearch(numbers, 3)); // -2

Line 12 sorts the array because binary search assumes the input is sorted. Line 13
prints the index at which a match is found. Line 14 prints one less than the negated index
of where the requested value would need to be inserted. The number 3 would need to be

106 Chapter 3 = Generics and Collections

inserted at index 1 (after the number 1 but before the number 6). Negating that gives us -1
and subtracting 1 gives us -2.
Let’s try that again with a List:

15: List<Integer> list = Arrays.asList(9,7,5,3);

16: Collections.sort(list); // [3, 5, 7, 9]

17: System.out.println(Collections.binarySearch(list, 3)); // ©
18: System.out.println(Collections.binarySearch(list, 2)); // -1

Similarly, we needed to sort first. Line 17 prints the index of a match. For line 18, we
would need to insert 2 at index 0, since it is smaller than any of the numbers in the list.
Negating O is still 0 and subtracting 1 gives us -1.

)/ We call sort() and binarySearch() on Collections rather than
,@TE Collection. In the past, Collection could not have concrete methods
because it is an interface. Some were added in Java 8. We will explore
these in Chapter 4, “Functional Programming.” Keep this change in mind if
you practice with any older mock exams.

You will see searching and sorting again later in this chapter, after you learn about the
Comparable interface.

Wrapper Classes and Autoboxing

As a brief review, each primitive has a corresponding wrapper class, as shown in Table 3.1.
Autoboxing automatically converts a primitive to the corresponding wrapper classes when
needed if the generic type is specified in the declaration. Unsurprisingly, unboxing auto-
matically converts a wrapper class back to a primitive.

TABLE 3.1 Wrapper classes

Primitive type Wrapper class Example of initializing
boolean Boolean new Boolean(true)
byte Byte new Byte((byte) 1)
short Short new Short((short) 1)

int Integer new Integer(1)

Reviewing OCA Collections 107

Primitive type Wrapper class Example of initializing
long Long new Long(1)

float Float new Float(1.0)
double Double new Double(1.0)
char Character new Character('c')

Let’s try an example, which also points out the only trick in this space. What do you
think this code does?

List<Integer> numbers = new ArraylList<Integer>();
numbers.add(1);

numbers.add(new Integer(3));

numbers.add(new Integer(5));

numbers.remove (1) ;

numbers.remove (new Integer(5));
System.out.println(numbers);

O 0 N o U b W

The answer is it leaves just [1]. Let’s walk through why that is. On lines 4 through 6, we
add three Integer objects to numbers. The one on line 4 relies on autoboxing to do so, but
it gets added just fine. At this point, numbers contains [1, 3, 5].

Line 7 contains the trick. The remove () method is overloaded. One signature takes
an int as the index of the element to remove. The other takes an Object that should be
removed. On line 7, Java sees a matching signature for int, so it doesn’t need to autobox
the call to the method. Now numbers contains [1, 5]. Line 8 calls the other remove()
method, and it removes the matching object, which leaves us with just [1].

Java also converts the wrapper classes to primitives via unboxing:

int num = numbers.get(0);

The Diamond Operator

Java has come a long way. Before Java 5 came out, you had to write code like the following
and hope that programmers remembered that you wanted only String objects in there:

List names = new ArraylList();

This required a bit of mind reading. You had no way of knowing names were expected to
contain String objects rather than StringBuilder or something else. In Java 5, you could

108 Chapter 3 = Generics and Collections

actually document this assumption in code through a new feature called generics! The
compiler even helps enforce this assumption for you:

List<String> names = new ArrayList<String>();

When Java 7 came out, its developers made it even better. The previous statement
required you to type six extra characters (String). Java 7 lets you shorten it a bit:

List<String> names = new ArrayList<>();

The shortened form uses the diamond operator. It is called that because <> looks like a
diamond if you tilt your head to the side.

You may laugh a bit about saving six characters. The diamond operator becomes more helpful
if you have more complex code. By the end of the chapter, you’ll know how to write code like this:

HashMap<String, HashMap<String, String>> mapl =
new HashMap<String, HashMap<String, String>>();

HashMap<String, HashMap<String, String>> map2 = new HashMap<>();

Both of these statements contain a nested map. The second line is a lot easier to read
because it doesn’t contain the redundant type information. In case you are wondering, this
nested map arrangement might be useful if you have a number of data caches that you want
to query by key.

The diamond operator isn’t limited to one-line declarations. In this example, you can see
it used with an instance variable and a local variable:

import java.util.*;
class Doggies {
List<String> names;
Doggies() {
names = new ArraylList<>(); // matches instance variable declaration
}
public void copyNames() {
ArrayList<String> copyOfNames;
copyOfNames = new ArrayList<>(); // matches local variable declaration

I

In the case of the constructor, use your judgment as to whether the diamond operator
makes the code easier to read. It is a good bit away from the declaration at that point. For
the exam, you just have to know that this is legal.

Working with Generics

Why do we need generics? Well, remember when we said that we had to hope the caller
didn’t put something in the list that we didn’t expect? The following does just that:

Working with Generics 109

14: static void printNames(List list) {

15: for (int i = 0; i < list.size(); i++) {

16: String name = (String) list.get(i); // class cast exception here
17: System.out.println(name);

18: }

19: }

20: public static void main(String[] args) {

21: List names = new ArrayList();

22: names.add(new StringBuilder ("Webby"));

23: printNames(names);

24: }

This code throws a ClassCastException. Line 22 adds a StringBuilder to list. This is
legal because a non-generic list can contain anything. However, line 16 is written to expect
a specific class to be in there. It casts to a String, reflecting this assumption. Since the
assumption is incorrect, the code throws a ClassCastException that java.lang
.StringBuilder cannot be cast to java.lang.String.

Generics fix this by allowing you to write and use parameterized types. You specify that
you want an ArrayList of String objects. Now the compiler has enough information to
prevent you from causing this problem in the first place:

List<String> names = new ArrayList<String>();
names.add(new StringBuilder ("Webby")); // DOES NOT COMPILE

Getting a compiler error is good. You’ll know right away that something is wrong rather
than hoping to discover it later.

Generic Classes

You can introduce generics into your own classes. The syntax for introducing a generic is to
declare a formal type parameter in angle brackets. For example, the following class named
Crate has a generic type variable declared after the name of the class:

public class Crate<T> {

private T contents;
public T emptyCrate() {

return contents;

public void packCrate(T contents) {
this.contents = contents;

The generic type T is available anywhere within the Crate class. When you instantiate
the class, you tell the compiler what T should be for that particular instance.

110 Chapter 3 = Generics and Collections

Naming Conventions for Generics

A type parameter can be named anything you want. The convention is to use single
uppercase letters to make it obvious that they aren’t real class names. The following are
common letters to use:

= Eforanelement

= K foramap key

=V foramap value

= Nforanumber

= Tfor ageneric data type

= S, U,V, and so forth for multiple generic types

For example, suppose an Elephant class exists, and we are moving our elephant to a new
and larger enclosure in our zoo. (The San Diego Zoo did this in 2009. It was interesting
seeing the large metal crate.)

Elephant elephant = new Elephant();

Crate<Elephant> crateForElephant = new Crate<>();
crateForElephant.packCrate(elephant);

Elephant inNewHome = crateForElephant.emptyCrate();

To be fair, we didn’t pack the crate so much as the elephant walked into it. However,
you can see that the Crate class is able to deal with an Elephant without knowing anything
about it.

This probably doesn’t seem particularly impressive yet. We could have just typed in Elephant
instead of T when coding Crate. What if we wanted to create a Crate for another animal?

Crate<Zebra> crateForZebra = new Crate<>();

Now we couldn’t have simply hard-coded Elephant in the Crate class, since a Zebra is
not an Elephant. However, we could have created an Animal superclass or interface and
used that in Crate.

Generic classes become useful when the classes used as the type parameter can have absolutely
nothing to do with each other. For example, we need to ship our 120-pound robot to another city:

Robot joeBot = new Robot();
Crate<Robot> robotCrate = new Crate<>();
robotCrate.packCrate(joeBot);

// ship to St. Louis
Robot atDestination = robotCrate.emptyCrate();

Working with Generics m

Now it is starting to get interesting. The Crate class works with any type of class. Before
generics, we would have needed Crate to use the Object class for its instance variable,
which would have put the burden on the caller of needing to cast the object it receives on
emptying the crate.

In addition to Crate not needing to know about the objects that go into it, those objects
don’t need to know about Crate either. We aren’t requiring the objects to implement an inter-
face named Crateable or the like. A class can be put in the Crate without any changes at all.

Don’t worry if you can’t think of a use for generic classes of your own. Unless you
are writing a library for others to reuse, generics hardly show up in the class definitions
you write. They do show up frequently in the code you call, such as the Java Collections
Framework.

Generic classes aren’t limited to having a single type parameter. This class shows two
generic parameters:

public class SizelLimitedCrate<T, U> {
private T contents;
private U sizelLimit;
public SizelLimitedCrate(T contents, U sizeLimit) {
this.contents = contents;
this.sizelLimit = sizelLimit;

1}

T represents the type that we are putting in the crate. U represents the unit that we are
using to measure the maximum size for the crate. To use this generic class, we can write the
following:

Elephant elephant = new Elephant();
Integer numPounds = 15_000;

SizelLimitedCrate<Elephant, Integer> cl = new SizelLimitedCrate<>(elephant,
numPounds) ;

Here we specify that the type is Elephant and the unit is Integer. We also throw in a
reminder that numeric literals have been able to contain underscores since Java 7.

Type Erasure

Specifying a generic type allows the compiler to enforce proper use of the generic type.
For example, specifying the generic type of Crate as Robot is like replacing the T in the
Crate class with Robot. However, this is just for compile time.

Behind the scenes, the compiler replaces all references to T in Crate with Object. In other
words, after the code compiles, your generics are actually just Object types. The Crate
class looks like the following:

112 Chapter 3 = Generics and Collections

public class Crate {
private Object contents;
public Object emptyCrate() {
return contents;
}
public void packCrate(Object contents) {
this.contents = contents;

This means there is only one class file. There aren’t different copies for different
parameterized types. (Some other languages work that way.)

This process of removing the generics syntax from your code is referred to as type
erasure. Type erasure allows your code to be compatible with older versions of Java
that do not contain generics.

The compiler adds the relevant casts for your code to work with this type of erased
class. For example, you type

Robot r = crate.emptyCrate();

and the compiler turns it into

Robot r = (Robot) crate.emptyCrate();

Generic Interfaces

Just like a class, an interface can declare a formal type parameter. For example, the follow-
ing Shippable interface uses a generic type as the argument to its ship() method:

public interface Shippable<T> {
void ship(T t);

There are three ways a class can approach implementing this interface. The first is to
specify the generic type in the class. The following concrete class says that it deals only
with robots. This lets it declare the ship() method with a Robot parameter:

class ShippableRobotCrate implements Shippable<Robot> {
public void ship(Robot t) { }

Working with Generics 113

The next way is to create a generic class. The following concrete class allows the caller
to specify the type of the generic:

class ShippableAbstractCrate<U> implements Shippable<U> {
public void ship(U t) { }

In this example, the type parameter could have been named anything, including T. We
used U in the example so that it isn’t confusing as to what T refers to. The exam won’t mind
trying to confuse you by using the same type parameter name.

The final way is to not use generics at all. This is the old way of writing code. It gener-
ates a compiler warning about Shippable being a raw type, but it does compile. Here the
ship() method has an Object parameter since the generic type is not defined:

class ShippableCrate implements Shippable {
public void ship(Object t) { }

@ Real World Scenario

What You Can’t Do with Generic Types

There are some limitations on what you can do with a generic type. These aren’t on the
exam, but it will helpful to refer back to this scenario when you are writing practice pro-
grams and run into one of these.

Most of the limitations are due to type erasure. Oracle refers to types whose information
is fully available at runtime as reifiable. Reifiable types can do anything that Java allows.
Non-reifiable types have some limitations.

Here are the things that you can’t do with generics. (And by “can’t,” we mean without
resorting to contortions like passing in a class object.)

= Call the constructor. new T() is not allowed because at runtime it would be new
Object().

= Create an array of that static type. This one is the most annoying, but it makes sense
because you'd be creating an array of Objects.

= Callinstanceof. This is not allowed because at runtime List<Integer> and
List<String> look the same to Java thanks to type erasure.

= Use a primitive type as a generic type parameter. This isn’t a big deal because you
can use the wrapper class instead. If you want a type of int, just use Integer.

= Create a static variable as a generic type parameter. This is not allowed because the
type is linked to the instance of the class.

114 Chapter 3 = Generics and Collections

Generic Methods

Up until this point, you’ve seen formal type parameters declared on the class or interface
level. It is also possible to declare them on the method level. This is often useful for static
methods since they aren’t part of an instance that can declare the type. However, it is also
allowed on non-static methods as well.

In this example, the method uses a generic parameter:

public static <T> Crate<T> ship(T t) {
System.out.println("Preparing " + t);
return new Crate<T>();

The method parameter is the generic type T. The return type is a Crate<T>. Before the
return type, we declare the formal type parameter of <T>.

Unless a method is obtaining the generic formal type parameter from the class/interface,
it is specified immediately before the return type of the method. This can lead to some
interesting-looking code!

3: public static <T> void sink(T t) { }
4 public static <T> T iddentity(T t) { return t; }
5: public static T noGood(T t) { return t; } // DOES NOT COMPILE

Line 3 shows the formal parameter type immediately before the return type of void.
Line 4 shows the return type being the formal parameter type. It looks weird, but it is
correct. Line 5 omits the formal parameter type, and therefore it does not compile.

@ Real World Scenario

Optional Syntax for Invoking a Generic Method

You can call a generic method normally, and the compiler will figure out which one you
want. Alternatively, you can specify the type explicitly to make it obvious what the type is:

Box.<String>ship("package");
Box.<String[]>ship(args);

As to whether this makes things clearer, it is up to you. You should at least be aware that
this syntax exists.

Interacting with Legacy Code

Legacy code is older code. It is usually code that is in a different style than you would write
if you were writing the code today. In this section, we are referring to code that was written

Working with Generics 115

to target Java 1.4 or lower, and therefore it does not use generics. Collections written with-
out generics are also known as raw collections.

Remember that using generics gives us compile time safety. At least it does when all of
the code involved uses generics. When some code uses generics and other code does not, it
is easy to get lulled into a false sense of security. Let’s look at an example:

class Dragon {}
class Unicorn { }
public class LegacyDragons {
public static void main(String[] args) {
List unicorns = new ArrayList();
unicorns.add(new Unicorn());
printDragons(unicorns);
}
private static void printDragons(List<Dragon> dragons) {
for (Dragon dragon: dragons) { // ClassCastException
System.out.println(dragon);
11}

In this example, we get a ClassCastException on a line that is working with a generic
list. At first, this seems odd. This is the problem that generics are supposed to solve. The
difference is that all of the code doesn’t use generics here. The main() method calls print-
Dragons () with a raw type. Due to type erasure, Java doesn’t know this is a problem until
runtime, when it attempts to cast a Unicorn to a Dragon. The cast is tricky because it
doesn’t appear in the code. With generic types, Java writes the casts for us.

Although Java doesn’t know that there is a problem, it does know there might be a
problem. Java knows that raw types are asking for trouble, and it presents a compiler
warning for this case. A compiler warning is different from a compiler error in that all of
the code still compiles with a compiler error. The compiler warning is Java informing you
that you should take a closer look at something.

@ Real World Scenario

Compiler Warnings

On the exam, you have to identify when a compiler warning will occur. You will not be
expected to know how to run the commands to list the compiler warnings or read the
output. In the real world, you will need that skill. When compiling the LegacyDragon class,
the compiler warnings look something like this:

$ javac *.java
Note: Some input files use unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

116 Chapter 3 = Generics and Collections

Java is basically telling you that it knows you are using old code and asking if you
want to know more. If you pass that flag, you get something like the following. (The
exact messages will depend on your compiler. For example, on some compilers, you'll
get a fourth warning where the unicorns object is declared.)

$ javac -Xlint:unchecked *.java

LegacyDragons.java:9: warning: [unchecked] unchecked call to add(E) as a member
of the raw type List

unicorns.add(new Unicorn());
A
where E is a type-variable:
E extends Object declared in interface List

LegacyDragons.java:11l: warning: [unchecked] unchecked method invocation: method
printDragons in class LegacyDragons is applied to given types

printDragons(unicorns);
A
required: List<Dragon>
found: List
LegacyDragons.java:11l: warning: [unchecked] unchecked conversion
printDragons (unicorns);
A
required: List<Dragon>
found: List
3 warnings

The messages look a little scary, but all Java is trying to tell you is that you should
really be using generics.

It shouldn’t be a surprise that you can get a ClassCastException in the other direction
either, for example:

1 public class LegacyUnicorns {

2 public static void main(String[] args) {

3 java.util.List<Unicorn> unicorns = new java.util.ArrayList<>();
4 addUnicorn(unicorns);

5: Unicorn unicorn = unicorns.get(0); // ClassCastException

6 }

7 private static void addUnicorn(List unicorn) {

8 unicorn.add(new Dragon());

9

1}

The main() method correctly uses generics. The problem is that it calls a legacy method that
claims to add a Unicorn to the list. But this method does not actually work as advertised and

Working with Generics 17

adds a Dragon on line 8 instead. Then when line 5 tries to put that Dragon in a Unicorn refer-
ence, a ClassCastException occurs. Of course, this code has compiler warnings in it as well.

This problem is fairly straightforward. If the legacy code doesn’t use the right types, the
generics code will still fail at runtime. Autoboxing has a different problem:

1 public class LegacyAutoboxing {

2 public static void main(String[] args) {

3 java.util.List numbers = new java.util.ArrayList();
4: numbers.add(5);

5 int result = numbers.get(0); // DOES NOT COMPILE
6 }

7 }

The good news is that unboxing fails with a compiler error rather than a runtime error.
On line 3, we create a raw list. On line 4, we try to add an int to the list. This works
because Java automatically autoboxes to an Integer. On line 5, we have a problem. Since
we aren’t using generics, Java doesn’t know that the list contains an Integer. It just knows
that we have an Object. And an Object can’t be unboxed into an int.

To review, the lesson is to be careful when you see code that doesn’t use generics. Pay spe-
cial attention to looking for compiler warnings, ClassCastExceptions, and compiler errors.

Bounds

By now, you might have noticed that generics don’t seem particularly useful since they are
treated as Objects and therefore don’t have many methods available. Bounded wildcards
solve this by restricting what types can be used in that wildcard position.

A bounded parameter type is a generic type that specifies a bound for the generic. Be
warned that this is the hardest section in the chapter, so don’t feel bad if you have to read it
more than once.

A wildcard generic type is an unknown generic type represented with a question mark
(7). You can use generic wildcards in three ways, as shown in Table 3.2. This section looks
at each of these three wildcard types.

TABLE 3.2 Typesofbounds

Type of bound Syntax Example

Unbounded wildcard ? List<?> 1 =new
ArrayList<String>();

Wildcard with an upper bound ? extends type List<? extends Exception> 1 =new
ArrayList<RuntimeException>();

Wildcard with a lower bound 7 super type List<? super Exception> 1 =new
ArrayList<Object>();

118 Chapter 3 = Generics and Collections

Unbounded Wildcards

An unbounded wildcard represents any data type. You use ? when you want to specify that
any type is OK with you. Let’s suppose that we want to write a method that looks through
a list of any type:

public static void printList(List<Object> list) {
for (Object x: list) System.out.println(x);

}

public static void main(String[] args) {
List<String> keywords = new ArrayList<>();
keywords.add("java");
printList(keywords); // DOES NOT COMPILE

Wait. What’s wrong? A String is a subclass of an Object. This is true. However,
List<String> cannot be assigned to List<Object>. We knows; it doesn’t sound logical. Java
is trying to protect us from ourselves with this one. Imagine if we could write code like this:

List<Integer> numbers = new ArrayList<>();
numbers.add(new Integer(42));

List<Object> objects = numbers; // DOES NOT COMPILE
objects.add("forty two");
System.out.println(numbers.get(1));

o N o u b

On line 4, the compiler promises us that only Integer objects will appear in numbers. If
line 6 were to have compiled, line 7 would break that promise by putting a String in there
since numbers and objects are references to the same object. Good thing that the compiler
prevents this.

Storing the Wrong Objects—Arrays vs. ArrayLists

We can’t write List<Object> 1 = new ArrayList<String>(); because Java is trying to
protect us from a runtime exception. You might think this would mean that we can’t write
Object[] o = new String[@];. Thatisn't the case. This code does compile:

Integer[] numbers = { new Integer(42)};
Object[] objects = numbers;
objects[0] = "forty two"; // throws ArrayStoreException

Although the code does compile, it throws an exception at runtime. With arrays, Java
knows the type that is allowed in the array. Just because we've assigned an Integer[] to
an Object[] doesn’t change the fact that Java knows it is really an Integer[].

Working with Generics 119

Due to type erasure, we have no such protection for an ArrayList. At runtime, the
ArraylList doesn’t know what is allowed in it. Therefore, Java uses the compiler to
prevent this situation from coming up in the first place. OK, so why doesn’t Java add
this knowledge to ArrayList? The reason is backward compatibility; that is, Java is
big on not breaking existing code.

Going back to printing a list, we cannot assign a List<String> to a List<Object>.
That’s fine; we don’t really need a List<Object>. What we really need is a List of “what-
ever.” That’s what List<?> is. The following code does what we expect:

public static void printList(List<?> list) {
for (Object x: list) System.out.println(x);

}

public static void main(String[] args) {
List<String> keywords = new ArrayList<>();
keywords.add("java");
printList(keywords);

printList() takes any type of list as a parameter. keywords is of type List<String>.
We have a match! List<String> is a list of anything. “Anything” just happens to be a
String here.

Upper-Bounded Wildcards

Let’s try to write a method that adds up the total of a list of numbers. We’ve established
that a generic type can’t just use a subclass:

ArrayList<Number> 1list = new ArraylList<Integer>(); // DOES NOT COMPILE
Instead, we need to use a wildcard:
List<? extends Number> list = new ArraylList<Integer>();

The upper-bounded wildcard says that any class that extends Number or Number itself
can be used as the formal parameter type:

public static long total(List<? extends Number> list) {
long count = 0;
for (Number number: list)
count += number.longValue();
return count;

120 Chapter 3 = Generics and Collections

Remember how we kept saying that type erasure makes Java think that a generic type
is an Object? That is still happening here. Java converts the previous code to something
equivalent to the following:

public static long total(List list) {
long count = 0;
for (Object obj: list) {
Number number = (Number) obj;
count += number.longValue();
}

return count;

Something interesting happens when we work with upper bounds or unbounded wild-
cards. The list becomes logically immutable. Immutable means that the object cannot be
modified, as you saw in Chapter 2, “Design Patterns and Principles.” Technically, you can
remove elements from the list, but the exam won't ask about this.

2 static class Sparrow extends Bird { }

3 static class Bird { }

4

5 public static void main(String[] args) {

6: List<? extends Bird> birds = new ArrayList<Bird>();

7 birds.add(new Sparrow()); // DOES NOT COMPILE
8 birds.add(new Bird()); // DOES NOT COMPILE
9: }

The problem stems from the fact that Java doesn’t know what type List<? extends
Bird> really is. It could be List<Bird> or List<Sparrow> or some other generic type that
hasn’t even been written yet. Line 7 doesn’t compile because we can’t add a Sparrow to
List<Bird>, and line 8 doesn’t compile because we can’t add a Bird to List<Sparrow>.
From Java’s point of view, both scenarios are equally possible so neither is allowed.

Now let’s try an example with an interface. We have an interface and two classes that
implement it:

interface Flyer { void fly(); }
class HangGlider implements Flyer { public void fly() {} }
class Goose implements Flyer { public void fly() {} }

We also have two methods that use it. One just lists the interface and the other uses an
upper bound:

private void anyFlyer(List<Flyer> flyer) {}
private void groupOfFlyers(List<? extends Flyer> flyer) {}

Working with Generics 121

Note that we used the keyword extends rather than implements. Upper bounds are like
anonymous classes in that they use extends regardless of whether we are working with a
class or an interface.

You already learned that a variable of type List<Flyer> can be passed to either method. A
variable of type List<Goose> can be passed only to the one with the upper bound. This shows
one of the benefits of generics. Random flyers don’t fly together. We want our groupOfFlyers()
method to be called only with the same type. Geese fly together but don’t fly with hang gliders.

Lower-Bounded Wildcards

Let’s try to write a method that adds a string “quack” to two lists:

List<String> strings = new ArraylList<String>();
strings.add("tweet");

List<Object> objects = new ArrayList<Object>(strings);
addSound(strings);

addSound (objects);

The problem is that we want to pass a List<String> and a List<Object> to the same
method. First, make sure that you understand why the first three examples in Table 3.3 do
not solve this problem.

TABLE 3.3 Why we need alower bound

Can pass a Can pass a
Code Method compiles List<String> List<Object>
public static void No (unbounded Yes Yes
addSound(List<?> list) {list. generics are
add("quack™") ;} immutable)
public static void No (upper- Yes Yes
addSound (List<? extends Object> bounded generics
list) {list.add("quack");} are immutable)
public static void Yes No (with Yes
addSound (List<Object> list) generics,
{list.add("quack");} must pass

exact match)
public static void Yes Yes Yes

addSound (List<? super String>
list) {list.add("quack");}

122 Chapter 3 = Generics and Collections

To solve this problem, we need to use a lower bound:

public static void addSound(List<? super String> list) { // lower bound
list.add("quack");

With a lower bound, we are telling Java that the list will be a list of String objects or a
list of some objects that are a superclass of String. Either way, it is safe to add a String to
that list.

Just like generic classes, you probably won’t use this in your code unless you are writing
code for others to reuse. Even then it would be rare. But it’s on the exam, so now is the time
to learn it!

Understand Generic Supertypes

When you have subclasses and superclasses, lower bounds can get tricky:

List<? super IOException> exceptions = new ArraylList<Exception>();
exceptions.add(new Exception()); // DOES NOT COMPILE
exceptions.add(new IOException());

o U b~ W

exceptions.add(new FileNotFoundException());

Line 3 references a List that could be List<IOException> or List<Exception> or
List<Object>. Line 4 does not compile because we could have a List<IOException> and
an Exception object wouldn't fit in there.

Line 4 is fine. IOException can be added to any of those types. Line 5 is also fine. File-
NotFoundException can also be added to any of those three types. This is tricky because
FileNotFoundException is a subclass of IOException and the keyword says super. What
happens is that Java says “Well, FileNotFoundException also happens to be an IOEx-
ception, so everything is fine.”

Putting It All Together

At this point, you know everything that you need to know to ace the exam questions on
generics. It is possible to put these concepts together to write some really confusing code,
which the exam likes to do.

This section is going to be difficult to read. It contains the hardest questions that you
could possibly be asked about generics. The exam questions will probably be easier to read
than these. We want you to encounter the really tough ones here so that you are ready for
the exam. In other words, don’t panic. Take it slow, and reread the code a few times. You’ll
get it.

Let’s try an example. First, we declare three classes that the example will use:

Working with Generics 123

class A {}
class B extends A { }
class C extends B { }

Ready? Can you figure out why these do or don’t compile? Also, try to figure out what
they do.

6 List<?> T1istl = new ArrayList<A>();

7: List<? extends A> 1ist2 = new ArrayList<A>();

8 List<? super A> 1ist3 = new ArrayList<A>();

9: List<? extends B> list4 = new ArrayList<A>(); // DOES NOT COMPILE
10: List<? super B> list5 = new ArrayList<A>();

11: List<?> 1ist6 = new ArraylList<? extends A>(); // DOES NOT COMPILE

Line 6 creates an ArrayList that can hold instances of class A. It is stored in a variable
with an unbounded wildcard. Any generic type can be referenced from an unbounded wild-
card, making this OK.

Line 7 tries to store a list in a variable declaration with an upper-bounded wildcard.
This is OK. You can have ArrayList<A>, ArrayList, or ArraylList<C> stored in that
reference. Line 8 is also OK. This time, you have a lower-bounded wildcard. The lowest
type you can reference is A. Since that is what you have, it compiles.

Line 9 has an upper-bounded wildcard that allows ArrayList or ArrayList<C> to be
referenced. Since you have ArraylList<A> that is trying to be referenced, the code does not
compile. Line 10 has a lower-bounded wildcard, which allows a reference to ArrayList<A>,
ArrayList, or ArraylList<Object>.

Finally, line 11 allows a reference to any generic type since it is an unbounded wildcard. The
problem is that you need to know what that type will be when instantiating the ArrayList. It
wouldn’t be useful anyway, because you can’t add any elements to that ArrayList.

Now on to the methods. Same question: try to figure out why they don’t compile and what
they do. We will present the methods one at a time because there is more to think about.

<T> T methodl(List<? extends T> list) {
return list.get(0);

method1() is a perfectly normal use of generics. It uses a method-specific type param-
eter, T. It takes a parameter of List<T>, or some subclass of T, and it returns a single object
of that T type. For example, you could call it with a List<String> parameter and have it
return a String. Or you could call it with a List<Number> parameter and have it return a
Number. Or...well, you get the idea.

Given that, you should be able to see what is wrong with this one:

<T> <? extends T> method2(List<? extends T> list) { // DOES NOT COMPILE
return list.get(0);

124 Chapter 3 = Generics and Collections

method2 () does not compile because the return type isn’t actually a type. You are writing the
method. You know what type it is supposed to return. You don’t get to specify this as a wildcard.
Now be careful—this one is extra tricky:

<B extends A> B method3(List list) {
return new B(); // DOES NOT COMPILE

method3 () does not compile. <B extends A> says that you want to use B as a type
parameter just for this method and that it needs to extend the A class. Coincidentally, B
is also the name of a class. It isn’t a coincidence. It’s an evil trick. Within the scope of the
method, B can represent classes A, B, or C, because all extend the A class. Since B no longer
refers to the B class in the method, you can’t instantiate it.

After that, it would be nice to get something straightforward:

void method4(List<? super B> list) {
}

method4 () is a normal use of generics. You can pass the types List, List<A>, or
List<Object>.
Finally, here is our last question for you:

<X> void method5(List<X super B> list) { // DOES NOT COMPILE
}

method5() does not compile because it tries to mix a method-specific type parameter
with a wildcard. A wildcard must have a ? in it.

We are happy to tell you that the rest of the chapter is far easier. We are also happy to tell
you that only the basics of generics are used in the rest of the chapter. Well, at least until you
get to the review questions. This means that you can keep reading the rest of this chapter and
come back to reread the generics section tomorrow when you have a fresh mind.

Using Lists, Sets, Maps, and Queues

A collection is a group of objects contained in a single object. The Java Collections
Framework is a set of classes in java.util for storing collections. There are four main
interfaces in the Java Collections Framework:

= List: A list is an ordered collection of elements that allows duplicate entries. Elements
in a list can be accessed by an int index.

= Set: A set is a collection that does not allow duplicate entries.

= Queue: A queue is a collection that orders its elements in a specific order for processing.
A typical queue processes its elements in a first-in, first-out order, but other orderings
are possible.

Using Lists, Sets, Maps, and Queues 125

= Map: A map is a collection that maps keys to values, with no duplicate keys allowed.
The elements in a map are key/value pairs.

Figure 3.1 shows the Collection interface and its core subinterfaces. Notice that Map
doesn’t implement the Collection interface. It is considered part of the Java Collections
Framework, even though it isn’t technically a Collection. It is a collection (note the lower-
case), though, in that it contains a group of objects. The reason why maps are treated dif-
ferently is that they need different methods due to being key/value pairs.

We will first discuss the methods Collection provides to all implementing classes. Then
we will cover the different types of collections, including when to use each one and the con-
crete subclasses. Then we will compare the different types.

FIGURE 3.1 The Collection interface is the root of all collections except maps.

Collection Map

List Set Queue

Common Collections Methods

The Collection interface contains useful methods for working with lists, sets, and queues. We
will also cover maps. In the following sections, we will discuss the most common ones. We will
cover stream in the next chapter and a couple others added in Java 8 at the end of this chapter.

You might have noticed that this book covers more Collections than the exam
objectives. The Java 7 version of the exam covered more implementations. Since they
behave in similar ways, we cover them as well to ensure that you are prepared in case an
old question sneaks onto the exam and also as a warning not to use some of them!

add()

The add() method inserts a new element into the Collection and returns whether it was
successful. The method signature is

boolean add(E element)

Remember that the Collections Framework uses generics. You will see E appear
frequently. It means the generic type that was used to create the collection. For some collec-
tion types, add () always returns true. For other types, there is logic as to whether the add
was successful. The following shows how to use this method:

3: List<String> list = new ArrayList<>();
4: System.out.println(list.add("Sparrow")); // true

126 Chapter 3 = Generics and Collections

5: System.out.println(list.add("Sparrow")); // true
6:

T: Set<String> set = new HashSet<>();

8: System.out.println(set.add("Sparrow")); // true
9: System.out.println(set.add("Sparrow")); // false

A List allows duplicates, making the return value true each time. A Set does not allow
duplicates. On line 9, we tried to add a duplicate so that Java returns false from the add ()
method.

remove()

The remove () method removes a single matching value in the Collection and returns
whether it was successful. The method signature is

boolean remove(Object object)

This time, the boolean return value tells us whether a match was removed. The follow-
ing shows how to use this method:

3: List<String> birds = new ArrayList<>();

4: birds.add("hawk"); // [hawk]

5: birds.add("hawk"); // [hawk, hawk]
6: System.out.println(birds.remove("cardinal")); // prints false
7: System.out.println(birds.remove("hawk")); // prints true
8: System.out.println(birds); // [hawk]

Line 6 tries to remove an element that is not in birds. It returns false because no such
element is found. Line 7 tries to remove an element that is in birds, so it returns true.
Notice that it removes only one match.

Since calling remove () with an int uses the index, an index that doesn’t
exist will throw an exception. For example, birds.remove(100) ; throws an
IndexOutOfBoundsException. Remember that there are overloaded remove () methods.
One takes the element to remove. The other takes the index of the element to remove. The
latter is being called here.

isEmpty() and size()

The isEmpty () and size() methods look at how many elements are in the Collection. The
method signatures are

boolean isEmpty()
int size()

The following shows how to use these methods:

System.out.println(birds.isEmpty()); // true
System.out.println(birds.size()); /] ©

Using Lists, Sets, Maps, and Queues 127

birds.add("hawk"); // [hawk]
birds.add("hawk"); // [hawk, hawk]
System.out.println(birds.isEmpty()); // false
System.out.println(birds.size()); /] 2

At the beginning, birds has a size of 0 and is empty. It has a capacity that is greater than
0. After we add elements, the size becomes positive and it is no longer empty.

clear()

The clear () method provides an easy way to discard all elements of the Collection. The
method signature is

void clear()
The following shows how to use this method:

List<String> birds = new ArrayList<>();

birds.add("hawk"); // [hawk]
birds.add("hawk"); // [hawk, hawk]
System.out.println(birds.isEmpty()); // false
System.out.println(birds.size()); /] 2
birds.clear(); // []
System.out.println(birds.isEmpty()); // true
System.out.println(birds.size()); /] 0

After calling clear (), birds is back to being an empty ArrayList of size 0.

contains()

The contains() method checks if a certain value is in the Collection. The method
signature is

boolean contains(Object object)

The following shows how to use this method:

List<String> birds = new ArrayList<>();
birds.add("hawk"); // [hawk]
System.out.println(birds.contains("hawk")); // true
System.out.println(birds.contains("robin")); // false

This method calls equals() on each element of the ArrayList to see if there are any matches.

Using the List Interface

You use a list when you want an ordered collection that can contain duplicate entries. Items
can be retrieved and inserted at specific positions in the list based on an int index much
like an array. Lists are commonly used because there are many situations in programming
where you need to keep track of a list of objects.

128 Chapter 3 = Generics and Collections

For example, you might make a list of what you want to see at the zoo: First, see the
lions because they go to sleep early. Second, see the pandas because there is a long line later
in the day. And so forth.

Figure 3.2 shows how you can envision a List. Each element of the List has an index,
and the indexes begin with zero.

FIGURE 3.2 Exampleofalist

[lions | pandas | zebras |
0 1 2

Sometimes, you don’t actually care about the order of elements in a list. List is like the
“go to” data type. When we make a shopping list before going to the store, the order of the
list happens to be the order in which we thought of the items. We probably aren’t attached
to that particular order, but it isn’t hurting anything.

While the classes implementing the List interface have many methods, you need to
know only the most common ones. Conveniently, these are the same for all of the imple-
mentations that might show up on the exam.

The main thing that all List implementations have in common is that they are ordered
and allow duplicates. Beyond that, they each offer different functionality. We will look at
the implementations that you need to know and the available methods.

)/ Pay special attention to which names are classes and which are interfaces.
Ad’“ The exam may ask you which is the best class or which is the best inter-
face for a scenario.

Comparing List Implementations

An ArrayList is like a resizable array. When elements are added, the ArrayList auto-
matically grows. When you aren’t sure which collection to use, use an ArrayList. This
class is so common that it was tested on the OCA too.

The main benefit of an ArrayList is that you can look up any element in constant time.
Adding or removing an element is slower than accessing an element. This makes an
ArrayList a good choice when you are reading more often than (or the same amount
as) writing to the ArrayList.

@ Real World Scenario
Big O Notation

In computer programming, we use big O notation to talk about the performance of
algorithms. It’s pretty clear that it is better for code to take 1 second than 10 seconds to
do the same thing. This is called an order of magnitude difference.

Using Lists, Sets, Maps, and Queues 129

Big O notation lets you compare the order of magnitude of performance rather than
the exact performance. It also assumes the worst-case response time. If you write an
algorithm that could take a while or be instantaneous, big O uses the longer one. It
uses an nto reflect the number of elements or size of the data you are talking about.
The following lists the most common big O notation values that you will see and what
they mean:

= (O(1)—constant time: It doesn’t matter how large the collection is, the answer
will always take the same time to return. Returning the string literal “Panda”
from a method will take constant time, as will returning the last element of an
array.

= Oflog n)—logarithmic time: A logarithm is a mathematical function that grows
much more slowly than the data size. You don’t need to know this for the
exam, but log(8) gives you 3 in base 2 and log(1024) gives you 10 in base 2.
The point is that logarithmic time is better than linear time. Binary search runs
in logarithmic time because it doesn’t look at the majority of the elements for
large collections.

= O(n)—linear time: The performance will grow linearly with respect to the size
of the collection. Looping through a list and returning the number of elements
matching “Panda” will take linear time.

= O(n?)—n squared time: Code that has nested loops where each loop goes through
the data takes n squared time. An example would be putting every pair of pandas
together to see if they’'ll share an exhibit.

A LinkedList is special because it implements both List and Queue. It has all of the
methods of a List. It also has additional methods to facilitate adding or removing from the
beginning and/or end of the list.

The main benefits of a LinkedL1ist are that you can access, add, and remove from the
beginning and end of the list in constant time. The tradeoff is that dealing with an arbi-
trary index takes linear time. This makes a LinkedList a good choice when you’ll be using
it as Queue.

There are also two old implementations. Way back when, Vector was the only choice
if you wanted a list. In Java 1.2, ArrayList essentially replaced it. Vector does the same
thing as ArrayList except more slowly. The benefit to that decrease in speed is that it
is thread-safe, but as you’ll see in Chapter 8, there is a better way to do that now. This
means that the real reason that you need to know about Vector is that really old code
might refer to it.

A Stack is a data structure where you add and remove elements from the top of the
stack. Think about a stack of paper as an example. Like Vector, Stack hasn’t been used
for new code in ages. In fact, Stack extends Vector. If you need a stack, use an ArrayDeque
instead. More on this when we get to the Queue section.

130 Chapter 3 = Generics and Collections

Working with List Methods

The methods in the List interface are for working with indexes. In addition to the
inherited Collection methods, the method signatures that you need to know are in

Table 3.4.

TABLE 3.4 List methods

Method Description

void add(E element) Adds element to end

void add(int index, E element) Adds element at index and moves the rest toward
the end

E get(int index) Returns element at index

int indexOf(Object o) Returns first matching index or -1 if not found

int lastIndexOf(Object o) Returns last matching index or -1 if not found

void remove(int index) Removes element at index and moves the rest

toward the front

E set(int index, E e) Replaces element at index and returns original

The following statements demonstrate these basic methods for adding and removing
items from a list:

4: List<String> list = new ArrayList<>();
5: list.add("SD"); // [SD]
6: list.add (0, "NY"); // [NY,SD]
7 list.set(1, "FL"); /] [NY,FL]
8: list.remove("NY"); // [FL]
9: list.remove(0); /][]

On line 4, 1ist starts out empty. Line 5 adds an element to the end of the list. Line 6
adds an element at index 0 that bumps the original index 0 to index 1. Notice how the
ArraylList is now automatically one larger. Line 7 replaces the element at index 1 with a
new value. Line 8 removes the element matching “NY”. Finally, line 9 removes the element
at index 0 and list is empty again.

Let’s look at one more example that queries the list:

5: list.add("OH"); // [OH]
6: list.add("CO"); // [OH,CO]

Using Lists, Sets, Maps, and Queues 131

list.add("N3"); // [OH,CO,NJ]
String state = list.get(0); // OH
int index = list.indexOf("N3"); // 2

Lines 5 through 7 add elements to list in order. Line 8 requests the element at index
2. Line 9 searches the list until it hits an element with “NJ”. The elements do not need to
be in order for this to work because index0f () looks through the whole list until it finds a
match.

The output would be the same if you tried these examples with LinkedList, Vector, or
Stack. Although the code would be less efficient, it wouldn’t be noticeable until you have
very large lists.

Looping through a List
Back on the OCA, you learned how to loop through a list using an enhanced for loop:

for (String string: list) {
System.out.println(string);
}

You'll see another longer way to do this in code written before Java 5:

Iterator iter = list.iterator();
while(iter.hasNext()) {
String string = (String) iter.next();
System.out.println(string);
}

The old way requires casting because it predates generics. It also requires checking if the
Iterator has any more elements followed by requesting the next element. There's also
a hybrid way where you still use Iterator with generics. You get rid of the cast but still
have to handle the looping logic yourself.

Iterator<String> iter = list.iterator();
while(iter.hasNext()) {
String string = iter.next();
System.out.println(string);
}

Pay attention to the difference between these methods. hasNext () checks if there is a
next value. In other words, it tells you whether next () will execute without throwing an
exception. next() actually moves the Iterator to the next element.

132 Chapter 3 = Generics and Collections

Using the Set Interface

You use a set when you don’t want to allow duplicate entries. For example, you might
want to keep track of the unique animals that you want to see at the zoo. You aren’t
concerned with the order in which you see these animals, but there isn’t time to see
them more than once. You just want to make sure that you see the ones that are impor-
tant to you and remove them from the set of outstanding animals to see after you see
them.

Figure 3.3 shows how you can envision a Set. The main thing that all Set implementa-
tions have in common is that they do not allow duplicates. Beyond that, they each offer
different functionality. We will look at each implementation that you need to know for the
exam and how to write code using Set.

FIGURE 3.3 Example of aSet

Set

pandas

zebras

Comparing Set Implementations

A HashSet stores its elements in a hash table. This means that it uses the hashCode ()
method of the objects to retrieve them more efficiently. If you forgot how hashCode()
works, please review Chapter 1, “Advanced Class Design.”

The main benefit is that adding elements and checking if an element is in the set both
have constant time. The tradeoff is that you lose the order in which you inserted the
elements. Most of the time, you aren’t concerned with this in a set anyway, making HashSet
the most common set.

A TreeSet stores its elements in a sorted tree structure. The main benefit is that the set
is always in sorted order. The tradeoff is that adding and checking if an element is pres-
ent are both O(log n). TreeSet implements a special interface called NavigableSet, which
lets you slice up the collection as you will see in the next sidebar, “The NavigableSet
Interface”.

Figure 3.4 shows how you can envision HashSet and TreeSet being stored. HashSet
is more complicated in reality because it has empty rows as well, but this is fine for the
purpose of the exam.

Using Lists, Sets, Maps, and Queues 133

FIGURE 3.4 Examples of a HashSet and TreeSet

HashSet TreeSet

705903059 | zebras
-995544615 | pandas
102978519 | lions

Working with Set Methods

The Set interface doesn’t add any extra methods that you need to know for the exam. You
just have to know how sets behave with respect to the traditional Collection methods. You
also have to know the differences between the types of sets. Let’s start with HashSet:

3: Set<Integer> set = new HashSet<>();

4: boolean bl = set.add(66); // true

5: boolean b2 = set.add(10); /] true

6: boolean b3 = set.add(66); /] false

7: boolean b4 = set.add(8); // true

8: for (Integer integer: set) System.out.print(integer + ","); // 66,8,10,

The add () methods should be straightforward. They return true unless the Integer is
already in the set. Line 6 returns false, because we already have 66 in the set and a set
must preserve uniqueness. Line 8 prints the elements of the set in an arbitrary order. In this
case, it happens not to be sorted order, or the order in which we added the elements.

Remember that the equals() method is used to determine equality. The hashCode () method
is used to know which bucket to look in so that Java doesn’t have to look through the whole
set to find out if an object is there. The best case is that hash codes are unique, and Java has to
call equals() on only one object. The worst case is that all implementations return the same
hashCode (), and Java has to call equals() on every element of the set anyway.

Now let’s look at the same example with TreeSet:

3: Set<Integer> set = new HashSet<>();

4: boolean bl = set.add(66); // true

5: boolean b2 = set.add(10); // true

6: boolean b3 = set.add(66); // false
7: boolean b4 = set.add(8); // true

8: for (Integer integer: set) System.out.print(integer + ","); // 8,10,66

This time, the elements are printed out in their natural sorted order. Numbers imple-
ment the Comparable interface in Java, which is used for sorting. Later in the chapter, you
will learn how to create your own Comparable objects.

134 Chapter 3 = Generics and Collections

The NavigableSet Interface

TreeSet implements the NavigableSet interface. This interface provides some interest-
ing methods. Their method signatures are as follows:

Method Description

E lower(E e) Returns greatest element that is < e, or null if no such element
E floor(E e) Returns greatest element that is <= e, or null if no such element
E ceiling(E e) Returns smallest element that is >= e, or null if no such element
E higher(E e) Returns smallest element that is > e, or null if no such element

These methods were added to the exam with Java 6, so you might come across them.
Let’s look at an example of these methods:

36: NavigableSet<Integer> set = new TreeSet<>();
37: for (int i = 1; i <= 20; i++) set.add(i);

38: System.out.println(set.lower(10)); // 9
39: System.out.println(set.floor(10)); // 10
40: System.out.println(set.ceiling(20)); // 20
41: System.out.println(set.higher(20)); // null

The TreeSet contains 20 Integer objects whose values are 1 to 20. In this example, line
38 must return the highest element that is less than 10. Line 39 must return the highest
element that is no higher than 10. See the difference? One includes the target element
and the other does not.

Line 40 must return the lowest element greater than or equal to 20. Line 41 must return
the lowest element greater than 20. There is no such element that meets these criteria,
making the result null.

These methods sound similar. Just remember that lower and higher elements do not
include the target element. This also makes sense in English. If something needs to be
lower than a coffee table, it must completely fit under the coffee table.

Using the Queue Interface

You use a queue when elements are added and removed in a specific order. Queues are typi-
cally used for sorting elements prior to processing them. For example, when you want to
buy a ticket and someone is waiting in line, you get in line behind that person. And if you
are British, you get in the queue behind that person, making this really easy to remember!

Using Lists, Sets, Maps, and Queues 135

Unless stated otherwise, a queue is assumed to be FIFO (first-in, first-out). Some queue
implementations change this to use a different order. You can envision a FIFO queue as
shown in Figure 3.5. The other common format is LIFO (last-in, first-out.)

FIGURE 3.5 Example of a Queue

front First Second back
person person

All queues have specific requirements for adding and removing the next element. Beyond
that, they each offer different functionality. We will look at the implementations that you
need to know and the available methods.

Comparing Queue Implementations

You saw LinkedList earlier in the List section. In addition to being a list, it is a double-
ended queue. A double-ended queue is different from a regular queue in that you can insert
and remove elements from both the front and back of the queue. Think, “Mr. President,
come right to the front. You are the only one who gets this special treatment. Everyone else
will have to start at the back of the line.”

The main benefit of a LinkedL1ist is that it implements both the List and Queue
interfaces. The tradeoff is that it isn’t as efficient as a “pure” queue.

An ArrayDeque is a “pure” double-ended queue. It was introduced in Java 6, and it
stores its elements in a resizable array. The main benefit of an ArrayDeque is that it is more
efficient than a LinkedList. Deque is supposed to be pronounced “deck,” but many people,
including the authors, say it wrong as “d-queue.”

Working with Queue Methods

The ArrayDeque contains many methods. Luckily, there are only seven methods that you need
to know in addition to the inherited Collection ones. These methods are shown in Table 3.5.

TABLE 3.5 ArrayDeque

Method Description For queue For stack

boolean add(E e) Adds an element to the back of the queue Yes No
and returns true or throws an exception

E element() Returns next element or throws an Yes No
exception if empty queue

boolean offer(E e) Adds an element to the back of the queue Yes No
and returns whether successful

136 Chapter 3 = Generics and Collections
TABLE 3.5 ArrayDeque (continued)
Method Description For queue For stack
E remove() Removes and returns next element or Yes No
throws an exception if empty queue
void push(E e) Adds an element to the front of the queue Yes Yes
E poll() Removes and returns next element or Yes No
returns null if empty queue

E peek() Returns next element or returns null if Yes Yes
empty queue

E pop() Removes and returns next element or No Yes

throws an exception if empty queue

Except for push, all are in the Queue interface as well. push is what makes it a double-
ended queue.

As you can see, there are basically two sets of methods. One set throws an exception
when something goes wrong. The other uses a different return value when something goes
wrong. The offer/poll/peek methods are more common. This is the standard language
people use when working with queues.

Let’s look at an example that uses some of these methods:

12: Queue<Integer> queue = new ArrayDeque<>();
13: System.out.println(queue.offer(10)); // true
14: System.out.println(queue.offer(4)); // true
15: System.out.println(queue.peek()); // 10
16: System.out.println(queue.poll()); // 10
17: System.out.println(queue.poll()); /] 4
18: System.out.println(queue.peek()); // null

Figure 3.6 shows what the queue looks like at each step of the code. Lines 13 and 14
successfully add an element to the end of the queue. Some queues are limited in size,
which would cause offering an element to the queue to fail. You won’t encounter a sce-
nario like that on the exam. Line 15 looks at the first element in the queue, but it does
not remove it. Lines 16 and 17 actually remove the elements from the queue, which
results in an empty queue. Line 18 tries to look at the first element of a queue, which
results in null.

We’ve said that ArrayDeque is a double-ended queue. What if we want to insert an ele-
ment at the other end, just as we could with a Stack? No problem. We just call the push()
method. It works just like offer () except at the other end of the queue. When talking
about LIFO (stack), people say push/poll/peek. When talking about FIFO (single-ended
queue), people say offer/poll/peek.

Using Lists, Sets, Maps, and Queues 137

FIGURE 3.6 Working with a queue

queue.offer(10); // true

queue.offer(4); //true | 10 | 4 |

queue.peek(); // 10 | 10 | 4 |

queue.poll(); // 10

queue.poll(); // 4

queue.peek(); // null

Now let’s rewrite that example using the stack functionality:

12: ArrayDeque<Integer> stack = new ArrayDeque<>();
13: stack.push(10);
14: stack.push(4);

15: System.out.println(stack.peek()); /] 4
16: System.out.println(stack.poll()); /] 4
17: System.out.println(stack.poll()); // 10
18: System.out.println(stack.peek()); // null

Figure 3.7 shows what the queue looks like at each step of the code. Lines 13 and 14 success-
fully put an element on the front/top of the stack. The remaining code looks at the front as well.

FIGURE 3.7 Working with a stack

queue.push(10);
queue.push(4); | | 10 |
queue.peek(); // 4 | | 10 |

queue.poll(); // 4

queue.poll(); // 10

queue.peek(); // null

138 Chapter 3 = Generics and Collections

The difference between whether an ArrayDeque is being used as a stack or a queue is
really important. To review, a queue is like a line of people. You get on in the back and off
in the front. A stack is like a stack of plates. You put the plate on the top and take it off
the top. Since the stack is implemented using ArrayDeque, we refer to “top” and “front”
interchangeably.

A LinkedList works the exact same way as ArrayDeque, so we will skip showing the
code for that one.

Map

You use a map when you want to identify values by a key. For example, when you use the
contact list in your phone, you look up “George” rather than looking through each phone
number in turn.

You can envision a Map as shown in Figure 3.8. You don’t need to know the names of the
specific interfaces that the different maps implement, but you do need to know that TreeMap
is sorted and navigable.

FIGURE 3.8 Example of aMap

George 555-555-5555
Mary 777-777-7777

The main thing that all four classes have in common is that they all have keys and val-
ues. Beyond that, they each offer different functionality. We will look at the implementa-
tions that you need to know and the available methods.

Comparing Map Implementations

A HashMap stores the keys in a hash table. This means that it uses the hashCode () method
of the keys to retrieve their values more efficiently.

The main benefit is that adding elements and retrieving the element by key both have
constant time. The tradeoff is that you lose the order in which you inserted the elements.
Most of the time, you aren’t concerned with this in a map anyway. If you were, you could
use LinkedHashMap.

A TreeMap stores the keys in a sorted tree structure. The main benefit is that the keys are
always in sorted order. The tradeoff is that adding and checking if a key is present are both
O(log n).

A Hashtable is like Vector in that it is really old and thread-safe and that you won’t be
expected to use it. It contains a lowercase ¢ as a mistake from the olden days. All you have
to do is be able to pick it out in a lineup. In the form of old school analogies, ArrayList is
to Vector as HashMap is to Hashtable.

Using Lists, Sets, Maps, and Queues 139

Working with Map Methods

Given that Map doesn’t extend Collection, there are more methods specified on the Map
interface. Since there are both keys and values, we need generic type parameters for both.
The class uses K for key and V for value. Most of the method signatures that you need to
know for the exam are shown in Table 3.6.

TABLE 3.6 Map methods

Method

Description

void clear()
boolean isEmpty()
int size()

V get(Object key)

V put(K key, V value)
V remove(Object key)
boolean

containsKey(Object key)

boolean
containsValue(Object)

Set<K> keySet()

Collection<V> values()

Removes all keys and values from the map.
Returns whether the map is empty.
Returns the number of entries (key/value pairs) in the map.

Returns the value mapped by key or null if none is
mapped.

Adds or replaces key/value pair. Returns previous value or
null.

Removes and returns value mapped to key. Returns null
if none.

Returns whether key is in map.

Returns value is in map.

Returns set of all keys.

Returns Collection of all values.

As usual, let’s compare running the same code with two Map types. First up is HashMap:

Map<String, String> map = new HashMap<>();

map.put("koala", "bamboo");
map.put("lion", "meat");
map.put("giraffe", "leaf");
String food = map.get("koala"); // bamboo
for (String key: map.keySet())
System.out.print(key + ","); // koala,giraffe,lion,

140 Chapter 3 = Generics and Collections

Java uses the hashCode () of the key to determine the order. The order here happens to
not be sorted order, or the order in which we typed the values. Now let’s look at TreeMap:

Map<String, String> map = new TreeMap<>();
map.put("koala", "bamboo");
map.put("lion", "meat");
map.put("giraffe", "leaf");
String food = map.get("koala"); // bamboo
for (String key: map.keySet())
System.out.print(key + ","); // giraffe,koala,lion,

TreeMap sorts the keys as we would expect. If we were to have called values() instead
of keySet (), the order of the values would correspond to the order of the keys.
With our same map, we can try some boolean checks:

System.out.println(map.contains("lion")); // DOES NOT COMPILE
System.out.println(map.containsKey("lion")); // true
System.out.println(map.containsValue("lion")); // false
System.out.println(map.size()); // 3

The first line is a little tricky. contains() is a method on the Collection interface but
not the Map interface. The next two lines show that keys and values are checked separately.
Finally, we see that there are three key/value pairs in our map.

Comparing Collection Types

Let’s start off with a brief review of the characteristics of the different types. Make sure
that you can fill in Table 3.7 and Table 3.8 from memory.

TABLE 3.7 Java Collections Framework types

Can contain Elements Has keys Must add/remove
Type duplicate elements? ordered? and values? in specific order?
List Yes Yes (by index) No No
Map Yes (for values) No Yes No
Queue Yes Yes (retrieved in No Yes

defined order)

Set No No No No

Using Lists, Sets, Maps, and Queues 1M

TABLE 3.8 Collection attributes

Java Collections

Type Framework interface Sorted? Calls hashCode? Calls compareTo?
Arraylist List No No No
ArrayDeque Queue No No No
HashMap Map No Yes No
HashSet Set No Yes No
Hashtable Map No Yes No
LinkedList List, Queue No No No
Stack List No No No
TreeMap Map Yes No Yes
TreeSet Set Yes No Yes
Vector List No No No

Next, the exam expects you to know which data structures allow nulls. Most do allow

nulls, so we discuss only the exceptions. A few are even logical!

The data structures that involve sorting do not allow nulls. This makes sense. We can’t
compare a null and a String. They are completely different things. We wouldn’t say that 5
is less than “Puppy.” It doesn’t make any more sense to say that null is less than “Puppy”
either. This means that TreeSet cannot contain null elements. It also means that TreeMap
cannot contain null keys. Null values are OK.

Next comes ArrayDeque. You can’t put null in an ArrayDeque because methods
like pol1() use null as a special return value to indicate that the collection is empty.
Since null has that meaning, Java forbids putting a null in there. That would just be
confusing.

Finally, Hashtable doesn’t allow null keys or values. There isn’t really a good reason for
this one. It’s just because it is old and written that way. On the bright side, you aren’t likely
to get asked about this one since it is so old.

In handy list form, all data structures allow nulls except these:

TreeMap—no null keys

Hashtable—no null keys or values

142

TreeSet—no null elements

Chapter 3 = Generics and Collections

ArrayDeque—no null elements

Finally, the exam expects you to be able to choose the right collection type given a
description of a problem. Table 3.9 walks you through that type of situation to give you
practice. Pay attention to the Reason column. It gives you clues to look for when faced with

this type of question on the exam.

TABLE 3.9 Choosing the right collection type

Which class do you choose when

Answer (single

you want best type) Reason

to pick the top zoo map off a ArrayDeque The description is of a last-in, first-out

stack of maps data structure, so you need a stack,
which is a type of Queue. (Stack would
also match this description, but it
shouldn’t be used for new code.)

to sell tickets to people in the LinkedList The description is of a first-in, first-

order in which they appear in out data structure, so you need a

line and tell them their position queue. You also needed indexes, and

in line LinkedList is the only class to match
both requirements.

to write down the first names of Arraylist Since there are duplicates, you need

all of the elephants so that you a list rather than a set. You will be

can tell them to your friend’s accessing the list more often than

three-year-old every time she updating it, since three-year-olds ask

asks. (The elephants do not the same question over and over,

have unique first names.) making an ArrayList better than a
LinkedList. Vector and Stack aren’t
used in new code.

to list the unique animals that HashSet The keyword in the description is

you want to see at the zoo today unique. When you see “unique,” think
“set.” Since there were no require-
ments to have a sorted order or to
remember the insertion order, you use
the most efficient set.

to list the unique animals that TreeSet Since it says “unique,” you need a set.

you want to see at the zoo today This time, you need to sort, so you

in alphabetical order cannot use a HashSet.

to look up animals based on a HashMap Looking up by key should make you

unique identifier

think of a map. Since you have no
ordering or sorting requirements, you
should use the most basic map.

Comparator vs. Comparable 143

We recommend first identifying which type of collection the question is asking about.
First, figure out whether you are looking for a list, map, queue, or set. This lets you elimi-
nate a number of answers. Then you can figure out which of the remaining choices is the
best answer.

Comparator vs. Comparable

We discussed “order” for the TreeSet and TreeMap classes. For numbers, order is
obvious—it is numerical order. For String objects, order is defined according to the
Unicode character mapping. As far as the exam is concerned, that means numbers sort
before letters and uppercase letters sort before lowercase letters.

Remember that numbers sort before letters and uppercase letters sort
ITE before lowercase letters.

You can also sort objects that you create. Java provides an interface called Comparable.
If your class implements Comparable, it can be used in these data structures that require
comparison. There is also a class called Comparator, which is used to specify that you want
to use a different order than the object itself provides.

Comparable and Comparator are similar enough to be tricky. The exam likes to see if
it can trick you into mixing up the two. Don’t be confused! In this section, we will dis-
cuss Comparable first. Then, as we go through Comparator, we will point out all of the
differences.

Comparable
The Comparable interface has only one method. In fact, this is the entire interface:

public interface Comparable<T> {
public int compareTo(T o);

See the use of generics in there? This lets you avoid the cast when implementing compa-
reTo(). Any object can be Comparable. For example, we have a bunch of ducks and want to
sort them by name:

import java.util.*;
public class Duck implements Comparable<Duck> {
private String name;
public Duck(String name) {
this.name = name;

144

Chapter 3 = Generics and Collections
}
public String toString() { // use readable output
return name;
}

public int compareTo(Duck d) {
return name.compareTo(d.name); // call String's compareTo
}
public static void main(String[] args) {
List<Duck> ducks = new ArrayList<>();
ducks.add(new Duck("Quack"));
ducks.add(new Duck("Puddles"));
Collections.sort(ducks); // sort by name
System.out.println(ducks); // [Puddles, Quack]
1}

The Duck class implements the Comparable interface. Without implementing that inter-

face, all we have is a method named compareTo(), but it wouldn’t be a Comparable object.

The Duck class overrides the toString() method from Object, so we can see useful out-

put when printing out ducks. Without this override, the output would be something like
[Duck@70deade, Duck@5c647e05]—hardly useful in seeing which duck’s name comes first.

Finally, the Duck class implements compareTo (). Since Duck is comparing objects of type

String and the String class already has a compareTo() method, it can just delegate.

We still need to know what the compareTo() method returns so that we can write our

own. There are three rules to know:

The number zero is returned when the current object is equal to the argument to com-
pareTo().

A number less than zero is returned when the current object is smaller than the argu-
ment to compareTo().

A number greater than zero is returned when the current object is larger than the argu-
ment to compareTo().
Let’s look at an implementation of compareTo() that compares numbers instead of

String objects:

1
2
3
4
5:
6
7
8

public class Animal implements java.util.Comparable<Animal> {
private int id;
public int compareTo(Animal a) {
return id - a.id;
}
public static void main(String[] args) {
Animal al = new Animal();
Animal a2 = new Animal();

Comparator vs. Comparable 145

9: al.id = 5;

10: a2.id = 7;

11: System.out.println(al.compareTo(a2)); /] -2
12: System.out.println(al.compareTo(al)); /] 0
13: System.out.println(a2.compareTo(al)); /] 2
14: o}

Lines 7 and 8 create two Animal objects. Lines 9 and 10 set their id values. This is not a
good way to set instance variables. It would be better to use a constructor or setter method.
Since the exam shows nontraditional code to make sure that you understand the rules, we
throw in some as well.

Lines 3 through 5 implement the compareTo() method. Since an int is a primitive, we
can’t call a method on it. We could create the Integer wrapper class and call compareTo()
on that. It’s not necessary, though, since it is so easy to implement compareTo() correctly
on our own.

Lines 11 through 13 confirm that we’ve implemented compareTo() correctly. Line 11
compares a smaller id to a larger one, and therefore it prints a negative number. Line 12
compares animals with the same id, and therefore it prints 0. Line 13 compares a larger id
to a smaller one, and therefore it returns a positive number.

- Remember that id - a.id sorts in ascending order and a.id - id sortsin
ITE descending order.

When dealing with legacy code, the compareTo() method requires a cast since it is
passed an Object:

public class LegacyDuck implements java.util.Comparable {
private String name;
public int compareTo(Object obj) {
LegacyDuck d = (LegacyDuck) obj; // cast because no generics
return name.compareTo(d.name);

Since we don’t specify a generic type for Comparable, Java assumes that we want an
Object, which means that we have to cast to LegacyDuck before accessing instance vari-
ables on it.

You might have noticed by now that we have been writing java.util.Comparable.
That’s because it is in the java.util package. Most of the time, you won’t see the package
name on the exam. You can tell that the imports have been omitted because the code will
have line numbers that do not begin with line 1.

146 Chapter 3 = Generics and Collections

compareTo() and equals() Consistency

If you write a class that implements Comparable, you introduce new business logic for
determining equality. The compareTo () method returns 0 if two objects are equal, while
your equals () method returns true if two objects are equal. A natural ordering that

uses compareTo() is said to be consistent with equals if, and only if, x.equals(y) is true
whenever x.compareTo(y) equals 0. You are strongly encouraged to make your Compara-
ble classes consistent with equals because not all collection classes behave predictably if
the compareTo() and equals() methods are not consistent.

For example, the following Product class defines a compareTo() method that is not con-
sistent with equals:

public class Product implements Comparable<Product> {
int 1id;
String name;
public boolean equals(Object obj) {
if(!(obj dnstanceof Product)) {
return false;

}
Product other = (Product) obj;
return this.id == other.id;

}
public int compareTo(Product obj) {
return this.name.compareTo(obj.name);

I

You might be sorting Product objects by name, but names are not unique. Therefore, the
return value of compareTo () might not be ® when comparing two equal Product objects,
so this compareTo() method is not consistent with equals. One way to fix that is to use a

Comparator to define the sort elsewhere.

Now that you know how to implement Comparable objects, you get to look at
Comparators and focus on the differences.

Comparator

Sometimes you want to sort an object that did not implement Comparable, or you want to
sort objects in different ways at different times.
Suppose that we add weight to our Duck class. We now have the following:

public class Duck implements Comparable<Duck> {
private String name;

Comparator vs. Comparable 147

private int weight;
public Duck(String name, int weight) {
this.name = name;
this.weight = weight;
}
public String getName() { return name; }
public int getWeight() { return weight; }
public String toString() { return name; }
public int compareTo(Duck d) {
return name.compareTo(d.name);

The Duck class itself can define compareTo() in only one way. In this case, name was
chosen. If we want to sort by something else, we have to define that sort order outside the
compareTo() method:

public static void main(String[] args) {
Comparator<Duck> byWeight = new Comparator<Duck>() {
public int compare(Duck d1, Duck d2) {
return dl.getWeight()—d2.getWeight();

};

List<Duck> ducks = new ArrayList<>();
ducks.add(new Duck("Quack", 7));
ducks.add(new Duck("Puddles", 10));
Collections.sort(ducks);

System.out.println(ducks); // [Puddles, Quack]
Collections.sort(ducks, byWeight);
System.out.println(ducks); // [Quack, Puddles]

First, we defined an inner class with the comparator. Then we sorted without the com-
parator and with the comparator to see the difference in output.

Comparator is a functional interface since there is only one abstract method to imple-
ment. This means that we can rewrite the comparator in the previous example as any of the
following:

Comparator<Duck> byWeight = (d1, d2) -> dl.getWeight()—d2.getWeight();
Comparator<Duck> byWeight = (Duck d1, Duck d2) -> dl.getWeight()—d2.getWeight();
Comparator<Duck> byWeight = (d1, d2) -> { return dl.getWeight()—d2.getWeight(); };

Comparator<Duck> byWeight = (Duck d1, Duck d2) -> {return dl.getWeight()-
d2.getWeight(); };

148 Chapter 3 = Generics and Collections

All of these examples show taking two parameters and returning an int—just as
Comparator specifies. Remember that the type is optional. Java will infer it by what is
needed in that spot in the code. This is cool. You can rewrite five lines of code using a
funky syntax into one line in a different funky syntax! It is really cool because you get used
to the lambda syntax, whereas the anonymous inner class always feels kludgy. We will use
a mix of lambdas and anonymous inner classes in this book since you should expect to see
both approaches on the exam.

Is Comparable a Functional Interface?

We said that Comparator is a functional interface because it has a single abstract method.
Comparable is also a functional interface since it also has a single abstract method. How-
ever, using a lambda for Comparable would be silly. The point of Comparable is to imple-
ment it inside the object being compared.

There are a good number of differences between Comparable and Comparator. We’ve
listed them for you in Table 3.10.

TABLE 3.10 Comparison of Comparable and Comparator

Difference Comparable Comparator
Package name java.lang java.util
Interface must be implemented by class comparing? Yes No

Method name in interface compareTo compare
Number of parameters 1 2

Common to declare using a lambda No Yes

Memorize this table—really. The exam will try to trick you by mixing up the two and
seeing if you can catch it. Do you see why this one doesn’t compile?

Comparator<Duck> byWeight = new Comparator<Duck>() { //DOES NOT COMPILE
public int compareTo(Duck d1, Duck d2) {
return dl.getWeight()—d2.getWeight();

s

Comparator vs. Comparable 149

The method name is wrong. A Comparator must implement a method named com-
pare(). Pay special attention to method names and the number of parameters when you see
Comparator and Comparable in questions.

@ Real World Scenario

An Easier Way of Comparing Multiple Fields

When writing a Comparator that compares multiple instance variables, the code gets a
little messy. Suppose that we have a Squirrel class and assume that the species name
will never be null. We could write a constructor to enforce that if we wanted to:

public class Squirrel {
private int weight;
private String species;
public Squirrel(String theSpecies) {
if (theSpecies == null) throw new IllegalArgumentException();
species = theSpecies;
}

public int getWeight() { return weight; }

public void setWeight(int weight) { this.weight = weight; }

public String getSpecies() { return species; }

}

We want to write a Comparator to sort by species name. If two squirrels are from the spe-
cies, we want to sort the one that weighs the least first. We could do this with code that
looks like this:

public class MultiFieldComparator implements Comparator<Squirrel> {
public int compare(Squirrel sl, Squirrel s2) {
int result = sl.getSpecies().compareTo(s2.getSpecies());
if (result != 0) return result;
return sl.getWeight()-s2.getWeight();
1}

This works. It checks one field. If they don’t match, we are finished sorting. If they do
match, it looks at the next field. This isn’t that easy to read, though. It is also easy to get
wrong. Changing !=to == breaks the sort completely.

Java 8 makes this much easier. With the introduction of static and default methods on
interfaces, there are now some new helper methods on Comparator. The code can now
be written as this:

150 Chapter 3 = Generics and Collections

public class ChainingComparator implements Comparator<Squirrel> {
public int compare(Squirrel sl, Squirrel s2) {
Comparator<Squirrel> c = Comparator.comparing(s -> s.getSpecies());
c = c.thenComparingInt(s -> s.getWeight());
return c.compare(sl, s2);

1}

The lambda means to get the species value out of the squirrel and pass it to the
method. You will see lots of functional programming code in the next chapter.

We grant you that it is the same number of lines. The second one is easier to read,
though. It describes what we are doing nicely. First we sort by species, and then
we sort by weight. We could have used method chaining to write this all on one
line.

You’ve probably noticed by now that we have ignored nulls in checking equality and
comparing objects. This works fine for the exam. In the real world, though, things aren’t
so neat. You will have to decide how to handle nulls or prevent them from being in your
object. It is common to decide that nulls sort before any other values.

Searching and Sorting

You already know the basics of searching and sorting. You now know a little more about
Comparable and Comparator.

The sort method uses the compareTo() method to sort. It expects the objects to be sorted
to be Comparable.

import java.util.*;

public class SortRabbits {

static class Rabbit{ int id; }

public static void main(String[] args) {
List<Rabbit> rabbits = new ArrayList<>();
rabbits.add(new Rabbit());
Collections.sort(rabbits); // DOES NOT COMPILE

© ~N U A WN

1}

Java knows that the Rabbit class is not Comparable. It knows sorting will fail, so it
doesn’t even let the code compile. You can fix this by passing a Comparator to sort().
Remember that a Comparator is useful when you want to specify sort order without using a
compareTo() method:

Searching and Sorting 151

import java.util.*;
public class SortRabbits {
static class Rabbit{ int id; }
public static void main(String[] args) {
List<Rabbit> rabbits = new ArrayList<>();
rabbits.add(new Rabbit());
Comparator<Rabbit> ¢ = (rl, r2) -> rl.id - r2.1id;
Collections.sort(rabbits, c);

1}

sort() and binarySearch() allow you to pass in a Comparator object when you don’t want
to use the natural order. There is a trick in this space. What do you think the following outputs?

List<String> names = Arrays.asList("Fluffy", "Hoppy");
Comparator<String> c = Comparator.reverseOrder();
int index = Collections.binarySearch(names, "Hoppy", c);

o b~ W

System.out.println(index);

The correct answer is -1. Before you panic, you don’t need to know that the answer
is -1. You do need to know that the answer is not defined. Line 3 creates a list, [Fluffy,
Hoppy]. This list happens to be sorted in ascending order. Line 4 creates a Comparator that
reverses the natural order. Line 5 requests a binary search in descending order. Since the list
is in ascending order, we don’t meet the precondition for doing a search.

Earlier in the chapter, we talked about collections that require classes to imple-
ment Comparable. Unlike sorting, they don’t check that you have actually implemented
Comparable at compile time.

Going back to our Rabbit that does not implement Comparable, we try to add it to a
TreeSet:

2 public class UseTreeSet {

3 static class Rabbit{ int did; }

4 public static void main(String[] args) {

5: Set<Duck> ducks = new TreeSet<>();

6 ducks.add(new Duck("Puddles"));

7 Set<Rabbit> rabbit = new TreeSet<>();

8 rabbit.add(new Rabbit()); // throws an exception
9 ol

Line 6 is fine. Duck does implement Comparable. TreeSet is able to sort it into the proper
position in the set. Line 8 is a problem. When TreeSet tries to sort it, Java discovers the
fact that Rabbit does not implement Comparable. Java throws an exception that looks like
this:

Exception in thread "main" java.lang.ClassCastException: comparing.Rabbit cannot
be cast to java.lang.Comparable

152 Chapter 3 = Generics and Collections

It seems weird for this exception to be thrown when the first object is added to the set.
After all, there is nothing to compare yet. Java works this way for consistency.

Just like searching and sorting, you can tell collections that require sorting that you wish
to use a specific Comparator, for example:

Set<Rabbit> rabbit = new TreeSet<>(new Comparator<Rabbit>() {
public int compare(Rabbit rl, Rabbit r2) {
return rl.id = r2.1d;
}

s
rabbit.add(new Rabbit());

Now Java knows that you want to sort by id and all is well. Comparators are helpful
objects. They let you separate sort order from the object to be sorted.

Additions in Java 8

Aside from using lambdas for the Comparator implementation, nothing in this chapter has
been unique to Java 8. This section is where that changes. Most of the changes in Java

8 revolve around streams, which we will cover in the next chapter. In this chapter, we
will also introduce method references to show how to make code more compact. Method
references and lambdas are core Java structures now, which means that you should
expect to see them in questions about other topics too. We will show you how to use the
new removelIf(), forEach(), merge(), computeIfPresent(), and computeIfAbsent()
methods.

Using Method References

Method references are a way to make the code shorter by reducing some of the code that
can be inferred and simply mentioning the name of the method. Like lambdas, it takes time
to get used to the new syntax.

Suppose that we have a Duck class with name and weight attributes along with this
helper class:

public class DuckHelper {
public static int compareByWeight(Duck d1, Duck d2) {
return dl.getWeight()—d2.getWeight();
}
public static int compareByName(Duck d1, Duck d2) {
return dl.getName().compareTo(d2.getName());

Additions in Java 8 153

Now think about how we would write a Comparator for it if we wanted to sort by
weight. Using lambdas, we’d have the following;:

Comparator<Duck> byWeight = (d1, d2) -> DuckHelper.compareByWeight(dl, d2);

Not bad. There’s a bit of redundancy, though. The lambda takes two parameters and
does nothing but pass those parameters to another method. Java 8 lets us remove that
redundancy and simply write this:

Comparator<Duck> byWeight = DuckHelper::compareByWeight;

The :: operator tells Java to pass the parameters automatically into compareByWeight.

)’ DuckHelper: :compareByWeight returns a functional interface and not an
‘drs int. Remember that : : is like lambdas, and it is typically used for deferred
execution.

There are four formats for method references:
= Static methods
= Instance methods on a particular instance
= Instance methods on an instance to be determined at runtime
= Constructors

In this chapter, we will be using three functional interfaces in our examples. We will use
more in the next chapter. Remember from Chapter 2 that Predicate is a functional inter-
face that takes a single parameter of any type and returns a boolean. Another functional
interface is Consumer, which takes a single parameter of any type and has a void return
type. Finally, Supplier doesn’t take any parameters and returns any type.

Let’s look at some examples from the Java APL. In each set, we show the lambda equiva-
lent. Remember that none of these method references are actually called in the code that
follows. They are simply available to be called in the future. Let’s start with a static method:

14: Consumer<List<Integer>> methodRefl = Collections::sort;
15: Consumer<List<Integer>> lambdal = 1 -> Collections.sort(l);

On line 14, we call a method with one parameter, and Java knows that it should create a
lambda with one parameter and pass it to the method.

Wait a minute. We know that the sort method is overloaded. How does Java know that we
want to call the version that omits the comparator? With both lambdas and method references,
Java is inferring information from the context. In this case, we said that we were declaring a
Consumer, which takes only one parameter. Java looks for a method that matches that description.

Next up is calling an instance method on a specific instance:

16: String str = "abc";
17: Predicate<String> methodRef2 = str::startsWith;
18: Predicate<String> lambda2 = s -> str.startsWith(s);

154 Chapter 3 = Generics and Collections

Line 17 shows that we want to call string.startsWith() and pass a single parameter to
be supplied at runtime. This would be a nice way of filtering the data in a list. Next, we call
an instance method without knowing the instance in advance:

19: Predicate<String> methodRef3 = String::isEmpty;
20: Predicate<String> lambda3 = s -> s.isEmpty();

Line 19 says the method that we want to call is declared in String. It looks like a static
method, but it isn’t. Instead, Java knows that isEmpty is an instance method that does not
take any parameters. Java uses the parameter supplied at runtime as the instance on which
the method is called. Finally, we have a constructor reference:

21: Supplier<ArraylList> methodRef4 = ArraylList::new;
22: Supplier<ArraylList> lambda4 = () -> new ArrayList();

A constructor reference is a special type of method reference that uses new instead of a
method, and it creates a new object. It expands like the method references you have seen
so far. You’ll see method references again in the next chapter when we cover more types of
functional interfaces.

Removing Conditionally

Java 8 introduces a new method called removeIf. Before this, we had the ability to remove
a specified object from a collection or a specified index from a list. Now we can specify
what should be deleted using a block of code.

The method signature looks like this:

boolean removeIf(Predicate<? super E> filter)

It uses a Predicate, which is a lambda that takes one parameter and returns a boolean.
Since lambdas use deferred execution, this allows specifying logic to run when that point in
the code is reached. Let’s take a look at an example:

List<String> list = new ArrayList<>();
list.add("Magician");

list.add("Assistant");

System.out.println(list); // [Magician, Assistant]
list.removeIf(s -> s.startsWith("A"));
System.out.println(list); // [Magician]

O 0 N o U1 b

Line 8 shows how to remove all of the strings that begin with the letter A. This allows us
to make the Assistant disappear.

How would you replace line 8 with a method reference? Trick question—you can’t. Since
startsWith takes a parameter that isn’t s, it needs to be specified “the long way.”

There isn’t much to removeIf as long as long as you remember how Predicate works. If this
isn’t familiar, go back and review Chapter 2. We will be using lambdas a lot in the next chapter,
and you need to have this down cold. The most important thing to remember about removeIf is
that it is one of two methods that are on a collection and it takes a lambda parameter.

Additions in Java 8 155

Updating All Elements

Another new method introduced on Lists is replaceAll. Java 8 lets you pass a lambda
expression and have it applied to each element in the list. The result replaces the current
value of that element.

The method signature looks like:

void replaceAll(UnaryOperator<E> o)

It uses a UnaryOperator, which takes one parameter and returns a value of the same
type. Let’s take a look at an example:

List<Integer> list = Arrays.asList(1, 2, 3);
list.replaceAll(x -> x*2);
System.out.println(list); // [2, 4, 6]

The lambda uses deferred execution to increase the value of each element in the list.

Looping through a Collection

Looping though a Collection is very common. For example, we often want to print out the
values one per line. There are a few ways to do this. We could use an iterator, the enhanced
for loop, or a number of other approaches—or we could use a Java 8 lambda.

Cats like to explore, so let’s join two of them as we learn a shorter way to loop through
a Collection. We start with the traditional way:

List<String> cats = Arrays.asList("Annie", "Ripley");
for(String cat: cats)
System.out.println(cat);

This works. We can do the same thing with lambdas in one line:
cats.forEach(c -> System.out.println(c));

This time, we’ve used a Consumer, which takes a single parameter and doesn’t return
anything. You won’t see this approach used too often because it is common to use a method
reference instead:

cats.forEach(System.out::println);

The cats have now discovered a more efficient way of printing their names. Now they
have more time to play (as do we)! In the next chapter, you will learn about using the
stream() method to do much more powerful things with lambdas.

Using New Java 8 Map APIs

Java 8 added a number of new methods on the Map interface. Only merge() is listed in the
OCP objectives. Two others, computeIfPresent() and computeIfAbsent(), are added in
the upgrade exam objectives. We recommend checking http://www.selikoff.net/ocp to
make sure that this is still the case before you take the exam.

http://www.selikoff.net/ocp

156 Chapter 3 = Generics and Collections

Sometimes you need to update the value for a specific key in the map. There are a few
ways that you can do this. The first is to replace the existing value unconditionally:

Map<String, String> favorites = new HashMap<>();
favorites.put("Jenny", "Bus Tour");

favorites.put("Jenny", "Tram");
System.out.println(favorites); // {Jenny=Tram}

There’s another method, called putIfAbsent(), that you can call if you want to set a
value in the map, but this method skips it if the value is already set to a non-null value:

Map<String, String> favorites = new HashMap<>();
favorites.put("Jenny", "Bus Tour");
favorites.put("Tom", null);

favorites.putIfAbsent("Jenny", "Tram");

favorites.putIfAbsent("Sam", "Tram");

favorites.putIfAbsent("Tom", "Tram");

System.out.println(favorites); // {Tom=Tram, Jenny=Bus Tour, Sam=Tram}

As you can see, Jenny’s value is not updated because one was already present. Sam
wasn’t there at all, so he was added. Tom was present as a key but had a null value.
Therefore, he was added as well. These two methods handle simple replacements.
Sometimes, you need more logic to determine which value should be used. The following
sections show three approaches.

merge

The merge () method allows adding logic to the problem of what to choose. Suppose that
our guests are indecisive and can’t pick a favorite. They agree that the ride that has the lon-
gest name must be the most fun. We can write code to express this by passing a mapping
function to the merge () method:

11: BiFunction<String, String, String> mapper = (v1, v2)

12: -> vl.length() > v2.length() ? vl: v2;

13:

14: Map<String, String> favorites = new HashMap<>();
15: favorites.put("Jenny", "Bus Tour");

16: favorites.put("Tom", "Tram");

17:

18: String jenny = favorites.merge("Jenny", "Skyride", mapper);

19: String tom = favorites.merge("Tom", "Skyride", mapper);

20:

21: System.out.println(favorites); // {Tom=Skyride, Jenny=Bus Tour}
22: System.out.println(jenny); // Bus Tour

23: System.out.println(tom); // Skyride

Additions in Java 8 157

Line 11 uses a functional interface called a BiFunction. In this case, it takes two param-
eters of the same type and returns a value of that type. Our implementation returns the one
with the longest name. Line 18 calls this mapping function, and it sees that “Bus Tour”
is longer than “Skyride,” so it leaves the value as “Bus Tour.” Line 19 calls this mapping
function again. This time “Tram” is not longer than “Skyride,” so the map is updated. Line
21 prints out the new map contents. Lines 22 and 23 show that the result gets returned
from merge().

The merge () method also has logic for what happens if nulls or missing keys are
involved. In this case, it doesn’t call the BiFunction at all, and it simply uses the new
value:

BiFunction<String, String, String> mapper = (v1, v2) -> vl.length() >
v2.length() ? vl : v2;

Map<String, String> favorites = new HashMap<>();
favorites.put("Sam", null);

favorites.merge("Tom", "Skyride", mapper);
favorites.merge("Sam", "Skyride", mapper);

System.out.println(favorites); // {Tom=Skyride, Sam=Skyride}

Notice that the mapping function isn’t called. If it were, we’d have a
NullPointerException. The mapping function is used only when there are two actual val-
ues to decide between.

The final thing to know about merge () is what happens when the mapping function is
called and returns null. The key is removed from the map when this happens:

BiFunction<String, String, String> mapper = (v1, v2) -> null;

Map<String, String> favorites = new HashMap<>();
favorites.put("Jenny", "Bus Tour");
favorites.put("Tom", "Bus Tour");

favorites.merge("Jenny", "Skyride", mapper);
favorites.merge("Sam", "Skyride", mapper);

System.out.println(favorites); // {Tom=Bus Tour, Sam=Skyride}

Tom was left alone since there was no merge() call for that key. Sam was added since
that key was not in the original list. Jenny was removed because the mapping function
returned null. You’ll see merge again in the next chapter.

computelfPresent and computelfAbsent

These two methods are on the upgrade exam but not on the OCP exam. In a nutshell,
computeIfPresent() calls the BiFunction if the requested key is found.

158 Chapter 3 = Generics and Collections

Map<String, Integer> counts = new HashMap<>();
counts.put("Jenny", 1);

BiFunction<String, Integer, Integer> mapper = (k, v) -> v + 1;
Integer jenny = counts.computeIfPresent("Jenny", mapper);
Integer sam = counts.computeIfPresent("Sam", mapper);
System.out.println(counts); // {Jenny=2}
System.out.println(jenny); // 2

System.out.println(sam); // null

The function interface is a BiFunction again. However, this time the key and value are
passed rather than two values. Just like with merge (), the return value is the result of what
changed in the map or null if that doesn’t apply.

For computeIfAbsent(), the functional interface runs only when the key isn’t present or
is null:

Map<String, Integer> counts = new HashMap<>();
counts.put("Jenny", 15);
counts.put("Tom", null);

Function<String, Integer> mapper = (k) -> 1;

Integer jenny = counts.computeIfAbsent("Jenny", mapper); // 15
Integer sam = counts.computeIfAbsent("Sam", mapper); // 1
Integer tom = counts.computeIfAbsent("Tom", mapper); // 1
System.out.println(counts); // {Tom=1, Jenny=15, Sam=1}

Since there is no value already in the map, a Function is used instead of a
BiFunction. Only the key is passed as input. As you can see, Jenny isn’t changed
because that key is already in the map. Tom is updated because null is treated like not
being there.

If the mapping function is called and returns null, the key is removed from the map for
computeIfPresent(). For computeIfAbsent(), the key is never added to the map in the
first place, for example:

Map<String, Integer> counts = new HashMap<>();
counts.put("Jenny", 1);

counts.computeIfPresent("Jenny", (k, v) -> null);
counts.computeIfAbsent("Sam", k -> null);
System.out.println(counts); // {}

After running this code, the map is empty. The call to computeIfPresent() removes the
key from the map. The call to computeIfAbsent() doesn’t add a key.
Table 3.11 and Table 3.12 show all of these scenarios as a reference.

Summary 159

TABLE 3.11 The basics of the merge and compute methods

Scenario merge computeIfAbsent computeIfPresent

Key already in map Result of function No action Result of function

Key not already in map Add new value to map

Functional Interface

used

BiFunction (Takes exist-
ing value and new value.

Returns new value.)

Result of function

BiFunction(Takes
key and existing
value. Returns
new value.)

No action

Function (Takes
key and returns
new value.)

TABLE 3.12

Merge and compute methods when nulls are involved

Mapping
Key has functions returns merge computeIfAbsent computeIfPresent
null value in null Remove key Do not change Do not change
map from map. map. map.
null value in Not null Set key to Add key to map Do not change
map mapping with mapping map.
function function result as
result. value.
Non-null null Remove key Do not change Remove key from
value in map from map. map. map.
Non-null Not null Set key to Do not change Set key to
value in map mapping map. mapping function
function result.
result.
Key notinmap null Add key to Do not change Do not change
map. map. map.
Key notin map Notnull Add key to Add key to map Do not change
map. with mapping map.

function result as
value.

Summary

Generics are type parameters for code. To create a class with a generic parameter, add <T>
after the class name. You can use any name you want for the type parameter. Single upper-

case letters are common choices.

160 Chapter 3 = Generics and Collections

The diamond operator (<>) is used to tell Java that the generic type matches the declara-
tion without specifying it again. The diamond operator can be used for local variables or
instance variables as well as one-line declarations.

Generics allow you to specify wildcards. <?> is an unbounded wildcard that means any
type. <? extends Object> is an upper bound that means any type that is Object or extends
it. <? extends MyInterface> means any type that implements MyInterface. <? super
Number> is a lower bound that means any type that is Number or a superclass. A compiler
error results from code that attempts to add or remove an item in a list with an unbounded
or upper-bounded wildcard.

When working with code that doesn’t use generics (also known as legacy code or raw types),
Java gives a compiler warning. A compiler warning is different than a compiler error in that the
compiler still produces a class file. If you ignore the compiler warning, the code might throw a
ClassCastException at runtime. Unboxing gives a compiler error when generics are not used.

Each primitive class has a corresponding wrapper class. For example, long’s wrapper
class is Long. Java can automatically convert between primitive and wrapper classes when
needed. This is called autoboxing and unboxing. Java will only use autoboxing if it doesn’t
find a matching method signature with the primitive. For example, remove (int n) will be
called rather than remove (Object o) when called with an int.

The Java Collections Framework includes four main types of data structures: lists, sets,
queues, and maps. The Collection interface is the parent interface of List, Set, and Queue.
The Map interface does not extend Collection. You need to recognize the following:

= List—An ordered collection of elements that allows duplicate entries
= ArraylList—Standard resizable list.
= LinkedList—Can easily add/remove from beginning or end.
= Vector—Older thread-safe version of ArrayList.
= Stack—Older last-in, first-out class.
= Set—Does not allow duplicates
= HashSet—Uses hashcode() to find unordered elements.
= TreeSet—Sorted and navigable. Does not allow null values.
= Queue—Orders elements for processing
= LinkedList—Can easily add/remove from beginning or end.
= ArrayDeque—TFirst-in, first-out or last-in, first-out. Does not allow null values.
= Map—Maps unique keys to values
= HashMap—Uses hashcode() to find keys.
= TreeMap—Sorted map. Does not allow null keys.
= Hashtable—Older version of hashmap. Does not allow null keys or values.

The Comparable interface declares the compareTo() method. This method returns
a negative number if the object is smaller than its argument, zero if the two objects
are equal, and a positive number otherwise. compareTo() is declared on the object

Exam Essentials 161

that is being compared, and it takes one parameter. The Comparator interface defines
the compare() method. A negative number is returned if the first argument is smaller,
zero if they are equal, and a positive number otherwise. compare() can be declared
in any code, and it takes two parameters. Comparator is often implemented using a
lambda.

The Arrays and Collections classes have methods for sort() and binarySearch().
Both take an optional Comparator parameter. It is necessary to use the same sort order for
both sorting and searching, so the result is not undefined. Collection has a few methods
that take lambdas, including removeIf(), forEach(), and merge().

A method reference is a compact syntax for writing lambdas that refer to meth-
ods. There are four types: static methods, instance methods referring to a specific
instance, instance methods with the instance supplied at runtime, and constructor
references.

Exam Essentials

Pick the correct type of collection from a description. A List allows duplicates and orders
the elements. A Set does not allow duplicates. A Queue orders its elements to allow retriev-
als from one or both ends. A Map maps keys to values. Be familiar with the differences of
implementations of these interfaces.

Identify valid and invalid uses of generics. <T> represents a type parameter. Any name
can be used, but a single uppercase letter is the convention. <?> is an unbounded wildcard.
<? extends X> is an upper-bounded wildcard and applies to both classes and interfaces. <?
super X> is a lower-bounded wildcard.

Recognize the difference between compiler warnings and errors when dealing with
legacy code. A compiler warning occurs when using non-generic types, and a
ClassCastException might occur at runtime. A compiler error occurs when trying to
unbox from a legacy collection.

Differentiate between Comparable and Comparator. Classes that implement Comparable
are said to have a natural ordering and implement the compareTo() method. A class is
allowed to have only one natural ordering. A Comparator takes two objects in the com-
pare() method. Different Comparators can have different sort orders. A Comparator is
often implemented using a lambda such as (a, b) -> a.num - b.num.

Understand the behavior and usage of the sort and binary search methods. The
Collections and Arrays classes provide overloaded sort() and binarySearch() methods.
They take an optional Comparator parameter. The list or array must be sorted before it is
searched using the same definition of order for both.

Map method references to the “long form” lambda. Be able to convert method references
into regular lambda expressions and vice versa. For example, System.out::print and x ->
System.out.print(x) are equivalent.

162 Chapter 3 = Generics and Collections

Review Questions

1. Suppose that you have a collection of products for sale in a database and you need to
display those products. The products are not unique. Which of the following collections
classes in the java.util package best suit your needs for this scenario?

A. Arrays

B. ArraylList
C. HashMap

D. HashSet

E. LinkedList

2. Suppose that you need to work with a collection of elements that need to be sorted in their
natural order, and each element has a unique string associated with its value. Which of the
following collections classes in the java.util package best suit your needs for this scenario?

A. Arraylist
HashMap
HashSet
TreeMap
TreeSet

"Moo W

Vector

3. What is the result of the following statements?

List list = new ArrayList();
list.add("one");
list.add("two");
list.add(7);

for (String s: list)
System.out.print(s);

co N oo 0o b~ W

onetwo
onetwo7
onetwo followed by an exception

Compiler error on line 6

moom»

Compiler error on line 7
4. What is the result of the following statements?
ArrayDeque<String> greetings = new ArrayDeque<String>();

greetings.push("hello");
greetings.push("hi");

o 0 b~ W

greetings.push("ola");

Review Questions

T greetings.pop();

8: greetings.peek();

9: while (greetings.peek() != null)
10: System.out.print(greetings.pop());
A. hello

B. hellohi

C. hellohiola

D. hi

E. hihello

F. The code does not compile.

G. An exception is thrown.

Which of these statements compile? (Choose all that apply.)

HashSet<Number> hs = new HashSet<Integer>();

HashSet<? super ClassCastException> set = new HashSet<Exception>();
List<String> 1list = new Vector<String>();

List<Object> values = new HashSet<Object>();

List<Object> objects = new ArraylList<? extends Object>();

mmoow»

Map<String, ? extends Number> hm = new HashMap<String, Integer>();

What is the result of the following code?

1: public class Hello<T> {

2: T t;

3: public Hello(T t) { this.t = t; }

4 public String toString() { return t.toString(); }
5: public static void main(String[] args) {

6: System.out.print(new Hello<String>("hi"));
7: System.out.print(new Hello("there"));

8: 1}

A. hi

B. hi followed by a runtime exception

C. hithere

D. Compiler error on line 4

E. Compiler error on line 6

F. Compiler error on line 7

Which of the following statements are true? (Select two.)

3: Set<Number> numbers = new HashSet<>();
4: numbers.add(new Integer(86));

163

164 Chapter 3 = Generics and Collections

numbers.add(75);

numbers.add(new Integer(86));
numbers.add(null);
numbers.add(309L);

Iterator iter = numbers.iterator();
10: while (iter.hasNext())

11: System.out.print(iter.next());

O 0 N oo »

The code compiles successfully.
The output is 8675nu11309.

The output is 867586nul1309.
The output is indeterminate.
There is a compiler error on line 3.

There is a compiler error on line 9.

GPMmMOO®>

An exception is thrown.

8. What is the result of the following code?

TreeSet<String> tree = new TreeSet<String>();
tree.add("one");

tree.add("One");

tree.add("ONE");
System.out.println(tree.ceiling("0On"));

On

one
One
ONE

The code does not compile.

mmoow»

An exception is thrown.

9. Which of the answer choices are valid given the following declaration?

Map<String, Double> map = new HashMap<>();
A. map.add("pi", 3.14159);

B. map.add("e", 2L);

C. map.add("log(1l)", new Double(0.0));

D. map.add('x', new Double(123.4));
E. None of the above

10. What is the result of the following program?

import java.util.*;

public class MyComparator implements Comparator<String> {

1.

12.

—

Mmoo ®w >

Review Questions

public int compare(String a, String b) {
return b.tolLowerCase().compareTo(a.toLowerCase());

public static void main(String[] args) {
String[] values = { "123", "Abb", "aab" };
Arrays.sort(values, new MyComparator());
for (String s: values)
System.out.print(s + " ");

}

Abb aab 123
aab Abb 123
123 Abb aab
123 aab Abb
The code does not compile.

A runtime exception is thrown.

What is the result of the following code?

3
4
5:
6
7

Mmoo w >

Map<Integer, Integer> map = new HashMap<>(10);
for (int 1 = 1; i <= 10; i++) {
map.put(i, i * 1i);
}
System.out.println(map.get(4));

16
25
Compiler error on line 3.
Compiler error on line 5.
Compiler error on line 7.

A runtime exception is thrown.

Which of these statements can fill in the blank so that the Helper class compiles
successfully? (Choose all that apply.)

3
4
5
6:
7
8
9

public class Helper {
public static <U extends Exception> void printException(U u) {
System.out.println(u.getMessage());
}
public static void main(String[] args) {

I

165

166

13.

14.

Chapter 3 = Generics and Collections
A. Helper.printException(new FileNotFoundException("A"));
B. Helper.printException(new Exception("B"));
C. Helper.<Throwable>printException(new Exception("C"));
D. Helper.<NullPointerException>printException(new NullPointerException

("0");
E. Helper.printException(new Throwable("E"));

Which of these statements can fill in the blank so that the Wildcard class compiles
successfully? (Choose all that apply.)

import java.util.*;

public class Wildcard {
public void showSize(List<?> list) {
System.out.println(list.size());
}
public static void main(String[] args) {
Wildcard card = new Wildcard();

card.showSize(list);

I

ArrayDeque<?> list = new ArrayDeque<String>();

ArraylList<? super Date> list = new ArrayList<Date>();

List<?> list = new ArrayList<?>();

List<Exception> list = new LinkedList<java.io.IOException>();

Vector<? extends Number> list = new Vector<Integer>();

Mmoo ®w >

None of the above
What is the result of the following program?

import java.util.*;

public class Sorted implements Comparable<Sorted>, Comparator<Sorted> {
private int num;
private String text;

Sorted(int n, String t) {
this.num = n;
this.text = t;
}
public String toString() { return "" + num; }
public int compareTo(Sorted s) { return text.compareTo(s.text); }
public int compare(Sorted sl, Sorted s2) { return sl.num - s2.num; }

15.

16.

Review Questions

public static void main(String[] args) {
Sorted sl = new Sorted(88, "a");
Sorted s2 = new Sorted(55, "b");
TreeSet<Sorted> tl = new TreeSet<>();
tl.add(sl); tl.add(s2);
TreeSet<Sorted> t2 = new TreeSet<>(sl);
t2.add(sl); t2.add(s2);
System.out.println(tl + " " + t2);

1}

[55. 88] [55, 88]
[55. 88] [88, 55]
[88. 55] [55, 88]
[88. 55] [88, 55]

The code does not compile.

mmo o ® >

A runtime exception is thrown.
What is the result of the following code?

Comparator<Integer> ¢ = (ol, 02) -> 02-0l;
List<Integer> list = Arrays.asList(5, 4, 7, 1);
Collections.sort(list, c);
System.out.println(Collections.binarySearch(list, 1));

A. 0
1
2
The result is undefined.

The code does not compile.

mmDoOow®

A runtime exception is thrown.

Which of the following statements are true? (Choose all that apply.)
Comparable is in the java.util package.
Comparator is in the java.util package.
compare() is in the Comparable interface.
compare() is in the Comparator interface.

compare() takes one method parameter.

mmo o ® >

compare() takes two method parameters.

167

17. Which two options can fill in the blanks to make this code compile? (Choose all that apply.)

1: public class Generic {
2: public static void main(String[] args) {

168 Chapter 3 = Generics and Collections

Generic<String> g = new Generic 0O
Generic<Object> g2 = new Generic();

o o b~ W

On line 1, fill in with <>.
On line 1, fill in with <T>.
On line 1, fill in with <?>.
On line 3, fill in with <>.
On line 3, fill in with <T>.
On line 3, fill in with <?>.

mmo o w»

18. Which of the following lines can be inserted to make the code compile? (Choose all that apply.)

class A {}
class B extends A {}
class C extends B {}

class D<C> {
// INSERT CODE HERE

}

A. A al = new A();
B. A a2 = new B();
C. A a3 = new C();
D. C cl = new A();
E. C c2 = new B();
F. Ccl = new C();

19. Which options are true of the following code? (Choose all that apply.)

<Integer> g = new LinkedList<>();
g.add(10);
g.add(12);
g.remove(l);

~N o o b W

System.out.print(q);

A. [If we fill in the blank with List, the outputis [10].
If we fill in the blank with List, the outputis [10, 12].
If we fill in the blank with Queue, the output is [10].

o w

D.
E.

F.

Review Questions

If we fill in the blank with Queue, the outputis [10, 12].
The code does not compile in either scenario.

A runtime exception is thrown.

20. What is the result of the following code?

21.

22.

Fill in the blanks to make this code compile and print 123. (Choose all that apply.)

~N o U b

mmo o>

mmoowp

4: Map m = new HashMap();
5:
6
7

m.put (123, "456");

: m.put("abc", "def");
: System.out.println(m.contains("123"));

false

true

Compiler error on line 4.
Compiler error on line 5.
Compiler error on line 7.

A runtime exception is thrown.

List<String> list = Arrays.asList("1", "2", "3");

Iterator iter = list.iterator();

while(iter.)
System.out.print(iter.

0);

On line 6, fill in the blank with hasNext ().
On line 6, fill in the blank with isNext().
On line 6, fill in the blank with next ().
On line 7, fill in the blank with getNext().
On line 7, fill in the blank with hasNext ().
On line 7, fill in the blank with next ().

What code change is needed to make the method compile?

public static T identity(T t) {

(-

Mmoo w>

return t;

Add <T> after the public keyword.
Add <T> after the static keyword.
Add <T> after T.

Add <?> after the public keyword.
Add <?> after the static keyword.

No change required. The code already compiles.

169

170 Chapter 3 = Generics and Collections

23. Which of the answer choices make sense to implement with a lambda? (Choose all that apply.)
A. Comparable interface

Comparator interface

remove method on a Collection

removeAll method on a Collection

moow

removeIf method on a Collection
24. Which of the following compiles and print outs the entire set? (Choose all that apply.)

Set<String> s = new HashSet<>();
s.add("lion");

.add("tiger");

.add("bear");

.forEach()3

nw uvu u

() -> System.out.println(s)
s -> System.out.println(s)

A
B
C. (s) -> System.out.println(s)
D. System.out.println(s)

E. System::out::println

F.

System.out::println
25. What is the result of the following?

Map<Integer, Integer> map = new HashMap<>();
map.put(l, 10);

map.put(2, 20);

map.put(3, null);

map.merge(1l, 3, (a,b) -> a + b);
map.merge(3, 3, (a,b) -> a + b);

System.out.println(map);

A. {1=10, 2=20}

B. {1=10, 2=20, 3=null}
C. {1=10, 2=20, 3=3}

D. {1=13, 2=20}

E. {1=13, 2=20, 3=null}
F. {1=13, 2=20, 3=3}

G. The code does not compile.
H

An exception is thrown.

Functional
Programming

THE OCP EXAM TOPICS COVERED IN THIS
CHAPTER INCLUDE THE FOLLOWING:

v Generics and Collections

Collections Streams and Filters
Iterate using forEach methods of Streams and List
Describe Stream interface and Stream pipeline

Use method references with Streams

v Lambda Built-In Functional Interfaces

Use the built-in interfaces included in the java.util.function
package such as Predicate, Consumer, Function, and Supplier

Develop code that uses primitive versions of functional
interfaces

Develop code that uses binary versions of functional interfaces

Develop code that uses the UnaryOperator interface

v Java Stream API

Develop code to extract data from an object using peek()
and map() methods including primitive versions of the map()
method

Search for data by using search methods of the Stream classes
including findFirst, findAny, anyMatch, allMatch, and noneMatch

Develop code that uses the Optional class

Develop code that uses Stream data methods and calculation
methods

Sort a collection using Stream API

Save results to a collection using the collect method and
group/partition data using the Collectors class

Use of merge() and flatMap() methods of the Stream API

By now, you should be comfortable with the lambda and
method reference syntax. Both are used when implementing
By functional interfaces. If you aren’t comfortable with this, go
back and review Chapter 2, “Design Patterns and Principles,” and Chapter 3, “Generics
and Collections.” You even used methods like forEach() and merge() in Chapter 3. In this
chapter, we’ll add actual functional programming to that, focusing on the Streams API.
Note that the Streams API in this chapter is used for functional programming. By contrast,
there are also java.io streams, which we will talk about in Chapter 8, “10.”

In this chapter, we will introduce many more functional interfaces and Optional classes.
Then we will introduce the Stream pipeline and tie it all together. You might have noticed
that this chapter covers a long list of objectives. That’s because they are extremely detailed
and many of them cover a tiny topic each. Don’t worry if you find the list daunting. By the
time you finish the chapter, you’ll see that many of the objectives cover similar topics. You
might even want to read this chapter twice before doing the review questions, so that you
really get the hang of it.

Using Variables in Lambdas

In Chapter 1, “Advanced Class Design,” we talked about the idea of “effectively final.”
This meant that if you could add the final modifier to a local variable, it was “effectively
final.” Lambdas use the same access rules as inner classes.

Lambda expressions can access static variables, instance variables, effectively final
method parameters, and effectively final local variables. How many of those can you find in
this example?

interface Gorilla { String move(); }
class GorillaFamily {
String walk = "walk";
void everyonePlay(boolean baby) {
String approach = "amble";
//approach = "run";

play(() -> walk);
play(() -> baby ? "hitch a ride": "run");
play(() -> approach);

O 0 N o U b W N =

= =
= ©
(]

Working with Built-In Functional Interfaces 173

12: void play(Gorilla g) {

13: System.out.println(g.move());
14: }

15: }

Line 8 uses an instance variable in the lambda. Line 9 uses a method parameter. We
know it is effectively final since there are no reassignments to that variable. Line 10 uses
an effectively final local variable. If we uncomment line 6, there will be a reassignment and
the variable will no longer be effectively final. This would cause a compiler error on line 10
when it tries to access a non—effectively final variable.

The normal rules for access control still apply. For example, a lambda can’t access
private variables in another class. Remember that lambdas can access a subset of variables
that are accessible, but never more than that.

Working with Built-In Functional Interfaces

As you remember, a functional interface has exactly one abstract method. All of the
functional interfaces in Table 4.1 were introduced in Java 8 and are provided in the
java.util.function package. The convention here is to use the generic type T for type
parameter. If a second type parameter is needed, the next letter, U, is used. If a distinct
return type is needed, R for return is used for the generic type.

TABLE 4.1 Common functional interfaces

Functional Interfaces # Parameters Return Type Single Abstract Method
Supplier<T> 0 T get

Consumer<T> 1(T) void accept

BiConsumer<T, U> 2 (T, U) void accept

Predicate<T> 1(T) boolean test

BiPredicate<T, U> 2 (T, U) boolean test

Function<T, R> 1(T) R apply

BiFunction<T, U, R> 2 (T, U) R apply
UnaryOperator<T> 1(T) T apply

BinaryOperator<T> 2(T, T) T apply

174 Chapter 4 = Functional Programming

Many other functional interfaces are defined in the java.util.function package. They
are for working with primitives, which you’ll see later in the chapter.

You do need to memorize this table. We will give you lots of practice in this section to
help make this memorable. Before you ask, most of the time we don’t actually assign the
implementation of the interface to a variable. The interface name is implied, and it gets
passed directly to the method that needs it. We are introducing the names so that you can
better understand and remember what is going on. Once we get to the streams part of the
chapter, we will assume that you have this down and stop creating the intermediate variable.

As you saw in Chapter 2, you can name a functional interface anything you want. The
only requirements are that it must be a valid interface name and contain a single abstract
method. Table 4.1 is significant because these interfaces are often used in streams and other
classes that come with Java, which is why you need to memorize them for the exam.

)/ As you’ll learn in Chapter 7, there’s an interface called Runnable. It is used
,@TE for concurrency the majority of the time. However, it may show up on the
exam when you are asked to recognize which functional interface to use.
All you need to know is that Runnable doesn’t take any parameters, return
any data, or use generics.

Let’s look at how to implement each of these interfaces. Since both lambdas and method
references show up all over, we show an implementation using both where possible.

Implementing Supplier

A Supplier is used when you want to generate or supply values without taking any input.
The Supplier interface is defined as

@FunctionalInterface public class Supplier<T> {
public T get();

On the OCA, you learned that you could create a date using a factory. If you’ve for-
gotten how, don’t worry. We will be covering it again in Chapter 5, “Dates, Strings, and
Localization,” in this book. You can use a Supplier to call this factory:

Supplier<LocalDate> sl = LocalDate: :now;
() -> LocalDate.now();

Supplier<LocalDate> s2

LocalDate d1 = sl.get();
LocalDate d2 = s2.get();

System.out.println(dl);
System.out.println(d2);

Working with Built-In Functional Interfaces 175

This example prints a date such as 2015-06-20 twice. It’s also a good opportunity to
review static method references. The LocalDate: :now method reference is used to create
a Supplier to assign to an intermediate variable s1. A Supplier is often used when con-
structing new objects. For example, we can print two empty StringBuilders:

Supplier<StringBuilder> sl = StringBuilder::new;
Supplier<StringBuilder> s2 = () -> new StringBuilder();

System.out.println(sl.get());
System.out.println(s2.get());

This time, we use a constructor reference to create the object. We’ve been using generics
to declare what type of Supplier we are using. This can get a little long to read. Can you
figure out what the following does? Just take it one step at a time.

Supplier<ArrayList<String>> sl = ArrayList<String>::new;
ArraylList<String> al = sl.get();
System.out.println(al);

We have a Supplier of a certain type. That type happens to be ArrayList<String>.
Then calling get () creates a new instance of ArrayList<String>, which is the generic type
of the Supplier—in other words, a generic that contains another generic. It’s not hard to
understand, so just look at the code carefully when this type of thing comes up.

Notice how we called get() on the functional interface. What would happen if we tried
to print out sl itself?

System.out.println(sl); prints something like this:

functionalinterface.BuiltIns$$Lambda$1/791452441@1fb3ebeb

That’s the result of calling toString() on a lambda. Yuck. This actually does mean
something. Our test class is named BuiltIns, and it is in a package that we created named
functionalinterface. Then comes $$, which means that the class doesn’t exist in a class
file on the file system. It exists only in memory. You don’t need to worry about the rest.

Implementing Consumer and BiConsumer

You use a Consumer when you want to do something with a parameter but not return any-
thing. BiConsumer does the same thing except that it takes two parameters. Omitting the
default methods, the interfaces are defined as follows:

@FunctionalInterface public class Consumer<T> {
void accept(T t);

}

@FunctionalInterface public class BiConsumer<T, U> {
void accept(T t, U u);

176 Chapter 4 = Functional Programming

You'll notice this pattern. Bi means two. It comes from Latin, but you can
OTE remember it from English words like binary (0 or 1) or bicycle (two wheels).
Always add another parameter when you see Bi show up.

You used a Consumer in Chapter 3 with forEach. Here’s that example actually being
assigned to the Consumer interface:

Consumer<String> cl = System.out::println;
Consumer<String> c2 = x -> System.out.println(x);

cl.accept("Annie");
c2.accept("Annie");

This example prints Annie twice. You might notice that the Consumer examples used the
method reference System.out: :println. That’s OK. Java uses the context of the lambda to
determine which overloaded println() method it should call.

BiConsumer is called with two parameters. They don’t have to be the same type. For
example, we can put a key and a value in a map using this interface:

Map<String, Integer> map = new HashMap<>();
BiConsumer<String, Integer> bl = map::put;
BiConsumer<String, Integer> b2 = (k, v) -> map.put(k, v);

bl.accept("chicken", 7);
b2.accept("chick", 1);

System.out.println(map);

The output is {chicken=7, chick=1}, which shows that both BiConsumer implementa-
tions did get called. This time we used an instance method reference since we want to call a
method on the local variable map. It’s also the first time that we passed two parameters to a
method reference. The code to instantiate bl is a good bit shorter than the code for b2. This
is probably why the exam is so fond of method references.

As another example, we use the same type for both generic parameters:

Map<String, String> map = new HashMap<>();
BiConsumer<String, String> bl = map::put;
BiConsumer<String, String> b2 = (k, v) -> map.put(k, v);

bl.accept("chicken", "Cluck");
b2.accept("chick", "Tweep");

System.out.println(map);

Working with Built-In Functional Interfaces 177

The output is {chicken=Cluck, chick=Tweep}, which shows that a BiConsumer can use
the same type for both the T and U generic parameters.

Implementing Predicate and BiPredicate

You’ve been using Predicate since the OCA, and you saw it again more recently with
removeIf() in Chapter 3. Predicate is often used when filtering or matching. Both are
very common operations. A BiPredicate is just like a Predicate except that it takes two
parameters instead of one. Omitting any default or static methods, the interfaces are
defined as follows:

@FunctionalInterface public class Predicate<T> {
boolean test(T t);

}

@Functionallnterface public class BiPredicate<T, U> {
boolean test(T t, U u);

It should be old news by now that you can use a Predicate to test a condition:

Predicate<String> pl = String::isEmpty;
Predicate<String> p2 = x -> x.isEmpty();

System.out.println(pl.test(""));
System.out.println(p2.test(""));

This prints true twice. More interesting is a BiPredicate. This example also prints true
twice:

BiPredicate<String, String> bl = String::startsWith;
BiPredicate<String, String> b2 = (string, prefix) -> string.startsWith(prefix);

System.out.println(bl.test("chicken", "chick"));
System.out.println(b2.test("chicken", "chick"));

The method reference combines two techniques that you’ve already seen. startsWith()
is an instance method. This means that the first parameter in the lambda is used
as the instance on which to call the method. The second parameter is passed to the
startsWith() method itself. This is another example of how method references save a
good bit of typing. The downside is that they are less explicit, and you really have to
understand what is going on!

178 Chapter 4 = Functional Programming

@ Real World Scenario
Default Methods on Functional Interfaces

By definition, all functional interfaces have a single abstract method. This doesn’t mean
that they have only one method, though. Several of the common functional interfaces
provide a number of helpful default methods. You don’t need to know these for the
exam, but they are helpful when you start building your own implementations out in the
real world.

Suppose that we have these two Predicates:

Predicate<String> egg = s -> s.contains("egg");
Predicate<String> brown = s -> s.contains("brown");

Now we want a Predicate for brown eggs and another for all other colors of eggs. We
could write this by hand:

Predicate<String> brownEggs = s -> s.contains("egg") && s.contains("brown");
Predicate<String> otherEggs = s -> s.contains("egg") && ! s.contains("brown");

This works, but it's not great. It’s a bit long to read, and it contains duplication. What if
we decide the letter e should be capitalized in eggs? We'd have to change it in three vari-
ables: egg, brownEggs, and otherEggs.

A better way to deal with this situation is to use two of the default methods on
Predicate:

Predicate<String> brownEggs = egg.and(brown);
Predicate<String> otherEggs = egg.and(brown.negate());

Neat! Now we are reusing the logic in the original Predicates to build two new ones. It's
shorter and clearer what the relationship is between the Predicates. We can also change
the spelling of egg in one place, and the other two objects will have new logic because
they reference it.

Implementing Function and BiFunction

A Function is responsible for turning one parameter into a value of a potentially different
type and returning it. Similarly, a BiFunction is responsible for turning two parameters
into a value and returning it. Omitting any default or static methods, the interfaces are
defined as the following:

@FunctionalInterface public class Function<T, R> {
R apply(T t);

Working with Built-In Functional Interfaces 179

@FunctionalInterface public class BiFunction<T, U, R> {
R apply(T t, U u);

For example, this function converts a String to the length of the String:

Function<String, Integer> fl = String::length;
Function<String, Integer> f2 = x -> x.length();

System.out.println(fl.apply("cluck")); // 5
System.out.println(f2.apply("cluck")); // 5

This function turns a String into an Integer. Well, technically it turns the String into
an int, which is autoboxed into an Integer. The types don’t have to be different. The fol-
lowing combines two String objects and produces another String:

BiFunction<String, String, String> bl = String::concat;
BiFunction<String, String, String> b2 = (string, toAdd) -> string.concat(toAdd);

System.out.println(bl.apply("baby ", "chick")); // baby chick
System.out.println(b2.apply("baby ", "chick")); // baby chick

The first two types in the BiFunction are the input types. The third is the result type.
For the method reference, the first parameter is the instance that concat() is called on and
the second is passed to concat ().

Creating Your Own Functional Interfaces

Java provides a built-in interface for functions with one or two parameters. What if you need
more? No problem. Suppose that you want to create a functional interface for the wheel
speed of each wheel on a tricycle. You could create a functional interface such as this:

interface TriFunction<T,U,V,R> {
R apply(T t, U u, V v);
}

There are four type parameters. The first three supply the types of the three wheel
speeds. The fourth is the return type. Now suppose that you want to create a function to
determine how fast your quad-copter is going given the power of the four motors. You
could create a functional interface such as the following:

interface QuadFunction<T,U,V,W,R> {
R apply(T t, Uu, Vv, Ww);

180 Chapter 4 = Functional Programming

There are five type parameters here. The first four supply the types of the four motors.
Ideally these would be the same type, but you never know. The fifth is the return type.

Java’s built-in interfaces are meant to facilitate the most common functional interfaces
that you’ll need. It is by no means an exhaustive list. Remember that you can add any
functional interfaces you'd like, and Java matches them when you use lambdas or
method references.

Implementing UnaryOperator and BinaryOperator

UnaryOperator and BinaryOperator are a special case of a function. They require all type
parameters to be the same type. A UnaryOperator transforms its value into one of the
same type. For example, incrementing by one is a unary operation. In fact, UnaryOperator
extends Function. A BinaryOperator merges two values into one of the same type. Adding
two numbers is a binary operation. Similarly, BinaryOperator extends BiFunction.
Omitting any default or static methods, the interfaces are defined as follows:

@FunctionalInterface public class UnaryOperator<T>
extends Function<T, 7> { }

@FunctionalInterface public class BinaryOperator<T>
extends BiFunction<T, T, T> { }

This means that method signatures look like this:

T apply(T t);
T apply(T t1, T t2);

If you look at the Javadoc, you’ll notice that these methods are actually declared on the
Function/BiFunction superclass. The generic declarations on the subclass are what force
the type to be the same. For the unary example, notice how the return type is the same type
as the parameter:

UnaryOperator<String> ul = String::toUpperCase;
UnaryOperator<String> u2 = x -> x.toUpperCase();
System.out.println(ul.apply("chirp"));
System.out.println(u2.apply("chirp"));

This prints CHIRP twice. We don’t need to specify the return type in the generics because
UnaryOperator requires it to be the same as the parameter. And now for the binary example:

BinaryOperator<String> bl = String::concat;
BinaryOperator<String> b2 = (string, toAdd) -> string.concat(toAdd);

Working with Built-In Functional Interfaces 181

System.out.println(bl.apply("baby ", "chick")); // baby chick
System.out.println(b2.apply("baby ", "chick")); // baby chick

Notice that this does the same thing as the BiFunction example. The code is more suc-
cinct, which shows the importance of using the correct functional interface. It’s nice to have
one generic type specified instead of three.

Checking Functional Interfaces

It’s really important to know the number of parameters, types, return value, and method
name for each of the functional interfaces. Now would be a good time to memorize
Table 4.1 if you haven’t done so already. Let’s do some examples to practice.

What functional interface would you use in these three situations?

= Returns a String without taking any parameters
= Returns a Boolean and takes a String
= Returns an Integer and takes two Integers

Ready? Think about your answer is before continuing. Really. You have to know
this cold. OK. The first one is a Supplier because it generates an object and takes zero
parameters. The second one is a Function because it takes one parameter and returns
another type. It’s a little tricky. You might think it is a Predicate. Note that a Predicate
returns a boolean primitive and not a Boolean object. Finally, the third one is either a
BinaryOperator or BiFunction. Since BinaryOperator is a special case of BiFunction,
either is a correct answer. BinaryOperator is the better answer of the two since it is more
specific.

Let’s try this exercise again but with code. It’s harder with code. With code, the first
thing you do is look at how many parameters the lambda takes and whether there is a
return value. What functional interface would you use to fill in the blank for these?

6: <List> exl = x -> "".equals(x.get(0));
7: <Long> ex2 = (Long 1) -> System.out.println(l);
8: <String, String> ex3 = (sl, s2) -> false;

Again, think about the answers before continuing. Ready? Line 6 passes one
String parameter to the lambda and returns a boolean. This tells us that it is a
Predicate or Function. Since the generic declaration has only one parameter, it is a
Predicate.

Line 7 passes one Long parameter to the lambda and doesn’t return anything. This tells
us that it is a Consumer. Line 8 takes two parameters and returns a boolean. When you see
a boolean returned, think Predicate unless the generics specify a Boolean return type. In
this case, there are two parameters, so it is a BiPredicate.

Are you finding these easy? If not, review Table 4.1 again. We aren’t kidding. You need
to know the table really well. Now that you are fresh from studying the table, we are going
to play “identify the error.” These are meant to be tricky:

182 Chapter 4 = Functional Programming

6: Function<List<String>> exl = x -> x.get(0); // DOES NOT COMPILE
7: UnaryOperator<Long> ex2 = (Long 1) -> 3.14; // DOES NOT COMIPLE
8: Predicate ex4 = String::isEmpty; // DOES NOT COMPILE

Line 6 claims to be a Function. A Function needs to specify two generics—the input
parameter type and the return value type. The return value type is missing from line 6,
causing the code not to compile. Line 7 is a UnaryOperator, which returns the same type
as it is passed in. The example returns a double rather than a Long, causing the code not to
compile.

Line 8 is missing the generic for Predicate. This makes the parameter that was passed
an Object rather than a String. The lambda expects a String because it calls a method
that exists on String rather than Object. Therefore, it doesn’t compile.

Returning an Optional

Suppose that you are taking an introductory Java class and receive scores of 90 and 100
on the first two exams. Now, we ask you what your average is. An average is calculated by
adding the scores and dividing by the number of scores, so you have (90+100)/2. This gives
190/2, so you answer with 95. Great!

Now suppose that you are taking your second class on Java, and it is the first day of
class. We ask you what your average is in this class that just started. You haven’t taken any
exams yet, so you don’t have anything to average. It wouldn’t be accurate to say that your
average is zero. That sounds bad, and it isn’t true. There simply isn’t any data, so you don’t
have an average yet.

How do we express this “we don’t know” or “not applicable” answer in Java? Starting
with Java 8, we use the Optional type. An Optional is created using a factory. You can
either request an empty Optional or pass a value for the Optional to wrap. Think of an
Optional as a box that might have something in it or might instead be empty. Figure 4.1
shows both options.

FIGURE 4.1 Optional

Optional.empty() Optional.of(95)

Here’s how to code our average method:

10: public static Optional<Double> average(int.. scores) {
11: if (scores.length == 0) return Optional.empty();

Returning an Optional 183

12: int sum = 0;

13: for (int score: scores) sum += score;

14: return Optional.of((double) sum / scores.length);
15: }

Line 11 returns an empty Optional when we can’t calculate an average. Lines 12 and
13 add up the scores. There is a functional programming way of doing this math, but we
will get to that later in the chapter. In fact, the entire method could be written in one line,
but that wouldn’t teach you how Optional works! Line 14 creates an Optional to wrap the
average.

Calling the method shows what is in our two boxes:

System.out.println(average(90, 100)); // Optional[95.0]
System.out.println(average()); // Optional.empty

You can see that one Optional contains a value and the other is empty. Normally, we
want to check if a value is there and/or get it out of the box. Here’s one way to do that:

20: Optional<Double> opt = average(90, 100);
21: if (opt.isPresent())
22: System.out.println(opt.get()); // 95.0

Line 21 checks whether the Optional actually contains a value. Line 22 prints it out.
What if we didn’t do the check and the Optional was empty?

26: Optional<Double> opt = average();
27: System.out.println(opt.get()); // bad

We’d get an exception since there is no value inside the Optional:
java.util.NoSuchElementException: No value present

When creating an Optional, it is common to want to use empty when the value is null.
You can do this with an if statement or ternary operator. We use the ternary operator to
make sure that you remember how it works from the OCA:

Optional o = (value== null) ? Optional.empty(): Optional.of(value);

If value is null, o is assigned the empty Optional. Otherwise, we wrap the value. Since
this is such a common pattern, Java provides a factory method to do the same thing:

Optional o = Optional.ofNullable(value);

That covers the static methods you need to know about Optional. Table 4.2 sum-
marizes most of the instance methods on Optional that you need to know for the
exam. There are a few others that involve chaining. We will cover those later in the
chapter.

184 Chapter 4 = Functional Programming

TABLE 4.2 Optionalinstance methods

Method When Optionalls Empty When Optional Contains a Value
get() Throws an exception Returns value
ifPresent(Consumer c) Does nothing Calls Consumer c with value
isPresent() Returns false Returns true
orElse(T other) Returns other parameter Returns value
orElseGet(Supplier s) Returns result of calling Returns value

Supplier

orElseThrow(Supplier s) Throws exception created Returns value
by calling Supplier

You’ve already seen get() and isPresent(). The other methods allow you to write
code that uses an Optional in one line without having to use the ternary operator.
This makes the code easier to read. Instead of using an if statement, which we used
when checking the average earlier, we can specify a Consumer to be run when there is
a value inside the Optional. When there isn’t, the method simply skips running the
Consumer:

Optional<Double> opt = average(90, 100);
opt.ifPresent(System.out::println);

Using ifPresent() better expresses our intent. We want something done if a value is
present. The other methods allow you to specify what to do if a value isn’t present. There
are three choices:

30: Optional<Double> opt = average();

31: System.out.println(opt.orElse(Double.NaN));

32: System.out.println(opt.orElseGet(() -> Math.random()));

33: System.out.println(opt.orElseThrow(() -> new IllegalStateException()));

This prints something like the following:

NaN

0.49775932295380165

Exception in thread "main" java.lang.IllegalStateException
at optional.Average.lambda$3(Average.java:56)
at optional.Average$$Lambdas$5/455659002.get (Unknown Source)
at java.util.Optional.orElseThrow(Optional.java:290)

Using Streams 185

Line 31 shows that you can return a specific value or variable. In our case, we print the
“not a number” value. Line 32 shows using a Supplier to generate a value at runtime to
return instead. ’'m glad our professors didn’t give us a random average though! Line 33
shows using a different Supplier to create an exception that should be thrown. Remember
that the stack trace looks weird because the lambdas are generated rather than named
classes.

Notice that the two methods that take a Supplier have different names. Do you see why
this code does not compile?

System.out.println(opt.orElseGet(
() -> new IllegalStateException())); // DOES NOT COMPILE

opt is an Optional<Double>. This means the Supplier must return a Double. Since this
supplier returns an exception, the type does not match.
The last example with Optional is really easy. What do you think this does?

Optional<Double> opt = average(90, 100);
System.out.println(opt.orElse(Double.NaN));
System.out.println(opt.orElseGet(() -> Math.random()));
System.out.println(opt.orElseThrow(() -> new IllegalStateException()));

It prints out 95 three times. Since the value does exist, there is no need to use the “or
else” logic.

Is Optional the Same as null?

Before Java 8, programmers would return null instead of Optional. There were a few
shortcomings with this approach. One was that there wasn't a clear way to express that
null might be a special value. By contrast, returning an Optional is a clear statement in
the API that there might not be a value in there.

Another advantage of Optional is that you can use a functional programming style with
ifPresent() and the other methods rather than needing an 1if statement. Finally, you’ll
see toward the end of the chapter that you can chain Optional calls.

Using Streams

A stream in Java is a sequence of data. A stream pipeline is the operations that run on a
stream to produce a result. Think of a stream pipeline as an assembly line in a factory.
Suppose that we were running an assembly line to make signs for the animal exhibits at
the zoo. We have a number of jobs. It is one person’s job to take signs out of a box. It is a

186 Chapter 4 = Functional Programming

second person’s job to paint the sign. It is a third person’s job to stencil the name of the ani-
mal on the sign. It is a fourth person’s job to put the completed sign in a box to be carried
to the proper exhibit.

Notice that the second person can’t do anything until one sign has been taken out of the
box by the first person. Similarly, the third person can’t do anything until one sign has been
painted, and the fourth person can’t do anything until it is stenciled.

The assembly line for making signs is finite. Once we process the contents of our box of
signs, we are finished. Finite streams have a limit. Other assembly lines essentially run for-
ever, like one for food production. Of course, they do stop at some point when the factory
closes down, but pretend that doesn’t happen. Or think of a sunrise/sunset cycle as infinite,
since it doesn’t end for an inordinately large period of time.

Another important feature of an assembly line is that each person touches each element
to do their operation and then that piece of data is gone. It doesn’t come back. The next
person deals with it at that point. This is different than the lists and queues that you saw in
the last chapter. With a list, you can access any element at any time. With a queue, you are
limited in which elements you can access, but all of the elements are there. With streams,
the data isn’t generated up front—it is created when needed.

Many things can happen in the assembly line stations along the way. In programming,
these are called stream operations. Just like with the assembly line, operations occur in a
pipeline. Someone has to start and end the work, and there can be any number of stations
in between. After all, a job with one person isn’t an assembly line! There are three parts to
a stream pipeline, as shown in Figure 4.2:

= Source: Where the stream comes from.

= [ntermediate operations: Transforms the stream into another one. There can be as few
or as many intermediate operations as you’d like. Since streams use lazy evaluation, the
intermediate operations do not run until the terminal operation runs.

s Terminal operation: Actually produces a result. Since streams can be used only once,
the stream is no longer valid after a terminal operation completes.

FIGURE 4.2 Stream pipeline

Source Intermediate Ol:zprrl:]ti:]ﬁm
— operations operation

Notice that the intermediate operations are a black box. When viewing the assembly
line from the outside, you care only about what comes in and goes out. What happens in
between is an implementation detail.

You will need to know the differences between intermediate and terminal operations
well. Make sure that you can fill in Table 4.3.

Using Streams 187

TABLE 4.3 Intermediate vs. terminal operations

Scenario For Intermediate Operations? For Terminal Operations?
Required part of a useful No Yes

pipeline?

Can exist multiple times in a Yes No

pipeline?

Return type is a stream type? Yes No

Executed upon method call? No Yes

Stream valid after call? Yes No

A factory typically has a foreman who oversees the work. Java serves as the foreman
when working with stream pipelines. This is a really important role, especially when
dealing with lazy evaluation and infinite streams. Think of declaring the stream as giving
instructions to the foreman. As the foreman finds out what needs to be done, he sets up the
stations and tells the workers what their duties will be. However, the workers do not start
until the foreman tells them to begin. The foreman waits until he sees the terminal opera-
tion to actually kick off the work. He also watches the work and stops the line as soon as
work is complete.

Let’s look at a few examples of this. We aren’t using code in these examples because it
is really important to understand this stream pipeline concept before starting to write the
code. Figure 4.3 shows a stream pipeline with one intermediate operation. Let’s take a look
at what happens from the point of the view of the foreman. First, he sees that the source is
taking signs out of the box. The foreman sets up a worker at the table to unpack the box
and says to await a signal to start. Then the foreman sees the intermediate operation to
paint the sign. He sets up a worker with paint and says to await a signal to start. Finally,
the foreman sees the terminal operation to put the signs into a pile. He sets up a worker to
do this and yells out that all three workers should start.

FIGURE 4.3 Stepsinrunning a stream pipeline

Take sign Paint Put sign in
out of box sign pile
—_— —_

71— —2
[—— [T ——

188 Chapter 4 = Functional Programming

Suppose that there are two signs in the box. Step 1 is the first worker taking one sign out
of the box and handing it to the second worker. Step 2 is the second worker painting it and
handing it to the third worker. Step 3 is the third worker putting it in the pile. Steps 4-6
are this same process for the other sign. Then the foreman sees that there are no more signs
left and shuts down the entire enterprise.

The foreman is smart. He can make decisions about how to best do the work based on
what is needed. As an example, let’s explore the stream pipeline in Figure 4.4.

FIGURE 4.4 A stream pipeline with a limit

Tal;e fsign Paint Only do Put s_ilgn in
out of box i ; pile
sign 2 sign

The foreman still sees a source of taking signs out of the box and assigns a worker to do
that on command. He still sees an intermediate operation to paint and sets up another worker
with instructions to wait and then paint. Then he sees an intermediate step that we need only
two signs. He sets up a worker to count the signs that go by and notify him when the worker
has seen two. Finally, he sets up a worker for the terminal operation to put the signs in a pile.

This time, suppose that there are 10 signs in the box. We start out like last time. The first
sign makes its way down the pipeline. The second sign also makes its way down the pipe-
line. When the worker in charge of counting sees the second sign, she tells the foreman. The
foreman lets the terminal operation worker finish her task and then yells out “stop the line.”
It doesn’t matter that that there are eight more signs in the box. We don’t need them, so it
would be unnecessary work to paint them. And we all want to avoid unnecessary work!

Similarly, the foreman would have stopped the line after the first sign if the terminal
operation was to find the first sign that gets created.

In the following sections, we will cover the three parts of the pipeline. We will also dis-
cuss special types of streams for primitives and how to print a stream.

Creating Stream Sources

In Java, the Stream interface is in the java.util.stream package. There are a few ways to
create a finite stream:

1: Stream<String> empty = Stream.empty(); // count = 0
2: Stream<Integer> singleElement = Stream.of(1); // count = 1
3: Stream<Integer> fromArray = Stream.of(1l, 2, 3); // count = 2

Line 1 shows how to create an empty stream. Line 2 shows how to create a stream with
a single element. Line 3 shows how to create a stream from an array. You’ve undoubtedly
noticed that there isn’t an array on line 3. The method signature uses varargs, which let you

Using Streams 189

specify an array or individual elements. Since streams are new in Java 8, most code that’s
already written uses lists. Java provides a convenient way to convert from a list to a stream:

4: List<String> list = Arrays.asList("a", "b", "c");
5: Stream<String> fromList = list.stream();
6: Stream<String> fromListParallel = list.parallelStream();

Line 5 shows that it is a simple method call to create a stream from a list. Line 6 does
the same, except that it creates a stream that is allowed to process elements in parallel. This
is a great feature because you can write code that uses parallelism before even learning
what a thread is. Using parallel streams is like setting up multiple tables of workers who
are able to do the same task. Painting would be a lot faster if we could have five painters
painting different signs at once. Just keep in mind that it isn’t worth working in parallel for
small streams. There is an overhead cost in coordinating the work among all of the workers
operating in parallel. For small amounts of work, it is faster just to do it sequentially. You’ll
learn much more about running in parallel in Chapter 7, “Concurrency.”

So far, this isn’t particularly impressive. We could do all this with lists. We can’t create
an infinite list, though, which makes streams more powerful:

7: Stream<Double> randoms = Stream.generate(Math::random);
8: Stream<Integer> oddNumbers = Stream.iterate(l, n -> n + 2);

Line 7 generates a stream of random numbers. How many random numbers? However
many you need. If you call randoms. forEach(System.out: :println), the program will
print random numbers until you kill it. Later in the chapter, you’ll learn about operations
like limit() to turn the infinite stream into a finite stream.

Line 8 gives you more control. iterate() takes a seed or starting value as the first
parameter. This is the first element that will be part of the stream. The other parameter is a
lambda expression that gets passed the previous value and generates the next value. As with
the random numbers example, it will keep on producing odd numbers as long as you need
them.

If you try to call System.out.println(stream), you'll get something like

ITE java.util.stream.ReferencePipeline$3@4517d9a3. This is different than
a Collection where you see the contents. You don’t need to know this for
the exam. We mention it so that you aren’t caught by surprise when writing
code for practice.

Using Common Terminal Operations

You can perform a terminal operation without any intermediate operations but not the
other way around. This is why we will talk about terminal operations first. Reductions are
a special type of terminal operation where all of the contents of the stream are combined
into a single primitive or Object. For example, you might have an int or a Collection.

190 Chapter 4 = Functional Programming

Table 4.4 summarizes this section. Feel free to use it as a guide to remember the most
important points as we go through each one individually. We explain them from easiest to
hardest rather than alphabetically.

TABLE 4.4 Terminal stream operations

Method What Happens for Infinite Streams Return Value Reduction
allMatch() Sometimes terminates boolean No
/anyMatch()

/noneMatch ()

collect() Does not terminate Varies Yes
count() Does not terminate long Yes
findAny () Terminates Optional<T> No
/findFirst()

forEach() Does not terminate void No
min()/max() Does not terminate Optional<T> Yes
reduce() Does not terminate Varies Yes
count()

The count () method determines the number of elements in a finite stream. For an infinite
stream, it hangs. Why? Count from 1 to infinity and let us know when you are finished. Or
rather don’t do that because we’d rather you study for the exam than spend the rest of your
life counting. count() is a reduction because it looks at each element in the stream and
returns a single value. The method signature is this:

long count()
This example shows calling count () on a finite stream:

Stream<String> s = Stream.of("monkey", "gorilla", "bonobo");
System.out.println(s.count()); // 3

min() and max()

The min() and max () methods allow you to pass a custom comparator and find the small-
est or largest value in a finite stream according to that sort order. Like count (), min() and
max () hang on an infinite stream because they cannot be sure that a smaller or larger value
isn’t coming later in the stream. Both methods are reductions because they return a single
value after looking at the entire stream. The method signatures are as follows:

Using Streams 191

Optional<T> min(<? super T> comparator)
Optional<T> max(<? super T> comparator)

This example finds the animal with the fewest letters in its name:

Stream<String> s = Stream.of("monkey", "ape", "bonobo");
Optional<String> min = s.min((sl, s2) -> sl.length()-s2.length());
min.ifPresent(System.out::println); // ape

Notice that the code returns an Optional rather than the value. This allows the method
to specify that no minimum or maximum was found. We use the Optional method and a
method reference to print out the minimum only if one is found. As an example of where
there isn’t a minimum, let’s look at an empty stream:

Optional<?> minEmpty = Stream.empty().min((sl, s2) -> 0);
System.out.println(minEmpty.isPresent()); // false

Since the stream is empty, the comparator is never called and no value is present in the
Optional.

findAny() and findFirst()

The findAny () and findFirst() methods return an element of the stream unless the stream
is empty. If the stream is empty, they return an empty Optional. This is the first method
you’ve seen that works with an infinite stream. Since Java generates only the amount of
stream you need, the infinite stream needs to generate only one element. findAny () is useful
when you are working with a parallel stream. It gives Java the flexibility to return to you
the first element it comes by rather than the one that needs to be first in the stream based
on the intermediate operations.

These methods are terminal operations but not reductions. The reason is that they some-
times return without processing all of the elements. This means that they return a value
based on the stream but do not reduce the entire stream into one value.

The method signatures are these:

Optional<T> findAny()
Optional<T> findFirst()

This example finds an animal:

Stream<String> s = Stream.of("monkey", "gorilla", "bonobo");
Stream<String> infinite = Stream.generate(() -> "chimp");
s.findAny().ifPresent(System.out::println); // monkey
infinite.findAny().ifPresent(System.out::println); // chimp

Finding any one match is more useful than it sounds. Sometimes we just want to sample the
results and get a representative element, but we don’t need to waste the processing generating
them all. After all, if we plan to work with only one element, why bother looking at more?

192 Chapter 4 = Functional Programming

allMatch(), anyMatch() and noneMatch()

The allMatch(), anyMatch() and noneMatch() methods search a stream and return infor-
mation about how the stream pertains to the predicate. These may or may not terminate
for infinite streams. It depends on the data. Like the find methods, they are not reductions
because they do not necessarily look at all of the elements.

The method signatures are as follows:

boolean anyMatch(Predicate <? super T> predicate)
boolean allMatch(Predicate <? super T> predicate)
boolean noneMatch(Predicate <? super T> predicate)

This example checks whether animal names begin with letters:

List<String> list = Arrays.asList("monkey", "2", "chimp");
Stream<String> infinite = Stream.generate(() -> "chimp");
Predicate<String> pred = x -> Character.islLetter(x.charAt(0));
System.out.println(list.stream().anyMatch(pred)); // true
System.out.println(list.stream().allMatch(pred)); // false
System.out.println(list.stream().noneMatch(pred)); // false
System.out.println(infinite.anyMatch(pred)); // true

This shows that we can reuse the same predicate, but we need a different stream each time.
anyMatch() returns true because two of the three elements match. allMatch() returns false
because one doesn’t match. noneMatch() also returns false because one matches. On the infi-
nite list, one match is found, so the call terminates. If we called noneMatch() or allMatch(),
they would run until we killed the program.

)/ Remember that allMatch (), anyMatch(), and noneMatch() return a bool-
Adrrs ean. By contrast, the find methods return an Optional because they return
an element of the stream.

forEach()

A looping construct is available. As expected, calling forEach() on an infinite stream does
not terminate. Since there is no return value, it is not a reduction.

Before you use it, consider if another approach would be better. Developers who learned
to write loops first tend to use them for everything. For example, a loop with an if state-
ment should be a filter instead.

The method signature is the following;:

void forEach(Consumer<? super T> action)

Notice that this is the only terminal operation with a return type of void. If you
want something to happen, you have to make it happen in the loop. Here’s one way
to print the elements in the stream. There are other ways, which we cover later in the
chapter.

Using Streams 193

Stream<String> s = Stream.of("Monkey", "Gorilla", "Bonobo");
s.forEach(System.out::print); // MonkeyGorillaBonobo

Remember that you can call forEach() directly on a Collectionorona
ITE Stream. Don’t get confused on the exam when you see both approaches.

Notice that you can’t use a traditional for loop on a stream:

Stream s = Stream.of(1);
for (Integer i: s) {} // DOES NOT COMPILE

While forEach() sounds like a loop, it is really a terminal operator for streams. Streams
cannot use a traditional for loop to run because they don’t implement the Iterable interface.

reduce()

The reduce () method combines a stream into a single object. As you can tell from the
name, it is a reduction. The method signatures are these:

T reduce(T didentity, BinaryOperator<T> accumulator)
Optional<T> reduce(BinaryOperator<T> accumulator)

<U> U reduce(U identity, BiFunction<U,? super T,U> accumulator,
BinaryOperator<U> combiner)

Let’s take them one at a time. The most common way of doing a reduction is to start
with an initial value and keep merging it with the next value. Think about how you would
concatenate an array of Strings into a single String without functional programming. It
might look something like this:

String[] array = new String[] { "w", "o", "l", "f" };
String result = "";

for (String s: array) result = result + s;
System.out.println(result);

The initial value of an empty String is the identity. The accumulator combines the cur-
rent result with the current String. With lambdas, we can do the same thing with a stream
and reduction:

Stream<String> stream = Stream.of("w", "o", "1", "f");
String word = stream.reduce("", (s, c) -> s + C);
System.out.println(word); // wolf

Notice how we still have the empty String as the identity. We also still concatenate the
Strings to get the next value. We can even rewrite this with a method reference:

Stream<String> stream = Stream.of("w", "o", "1", "f");
String word = stream.reduce("", String::concat);
System.out.println(word); /] wolf

194 Chapter 4 = Functional Programming

Let’s try another one. Can you write a reduction to multiply all of the Integer objects in
a stream? Try it. Our solution is shown here:

Stream<Integer> stream = Stream.of(3, 5, 6);
System.out.println(stream.reduce(l, (a, b) -> a*b));

We set the identity to 1 and the accumulator to multiplication. In many cases, the iden-
tity isn’t really necessary, so Java lets us omit it. When you don’t specify an identity, an
Optional is returned because there might not be any data. There are three choices for what
is in the Optional:

= If the stream is empty, an empty Optional is returned.
= If the stream has one element, it is returned.
= If the stream has multiple elements, the accumulator is applied to combine them.

The following illustrates each of these scenarios:

BinaryOperator<Integer> op = (a, b) -> a * b;
Stream<Integer> empty = Stream.empty();
Stream<Integer> oneElement = Stream.of(3);
Stream<Integer> threeElements = Stream.of(3, 5, 6);

empty.reduce(op).ifPresent(System.out::print); // no output
oneElement.reduce(op).ifPresent(System.out::print); // 3
threeElements.reduce(op).ifPresent(System.out::print); // 90

Why are there two similar methods? Why not just always require the identity? Java
could have done that. However, sometimes it is nice to differentiate the case where the
stream is empty rather than the case where there is a value that happens to match the iden-
tity being returned from calculation. The signature returning an Optional lets us differenti-
ate these cases. For example, we might return Optional.empty () when the stream is empty
and Optional.of(3) when there is a value.

The third method signature is used when we are processing collections in parallel. It
allows Java to create intermediate reductions and then combine them at the end. In our
example, it looks similar. While we aren’t actually using a parallel stream here, Java
assumes that a stream might be parallel. This is helpful because it lets us switch to a paral-
lel stream easily in the future:

BinaryOperator<Integer> op = (a, b) -> a * b;
Stream<Integer> stream = Stream.of(3, 5, 6);
System.out.println(stream.reduce(l, op, op)); // 90

collect()

The collect() method is a special type of reduction called a mutable reduction. It is
more efficient than a regular reduction because we use the same mutable object while

Using Streams 195

accumulating. Common mutable objects include StringBuilder and ArrayList. This is a
really useful method, because it lets us get data out of streams and into another form. The
method signatures are as follows:

<R> R collect(Supplier<R> supplier, BiConsumer<R, ? super T> accumulator,
BiConsumer<R, R> combiner)

<R,A> R collect(Collector<? super T, A,R> collector)

Let’s start with the first signature, which is used when we want to code specifically how
collecting should work. Our wolf example from reduce can be converted to use collect():

Stream<String> stream = Stream.of("w", "o", "1", "f");
StringBuilder word = stream.collect(StringBuilder::new,
StringBuilder::append, StringBuilder:append)

The first parameter is a Supplier that creates the object that will store the results as we
collect data. Remember that a Supplier doesn’t take any parameters and returns a value.
In this case, it constructs a new StringBuilder.

The second parameter is a BiConsumer, which takes two parameters and doesn’t return
anything. It is responsible for adding one more element to the data collection. In this exam-
ple, it appends the next String to the StringBuilder.

The final parameter is another BiConsumer. It is responsible for taking two data collec-
tions and merging them. This is useful when we are processing in parallel. Two smaller
collections are formed and then merged into one. This would work with StringBuilder
only if we didn’t care about the order of the letters. In this case, the accumulator and com-
biner have similar logic.

Now let’s look at an example where the logic is different in the accumulator and
combiner:

Stream<String> stream = Stream.of("w", "o", "1", "f");
TreeSet<String> set = stream.collect(TreeSet::new, TreeSet::add,
TreeSet::addAll);

System.out.println(set); // [f, 1, o, w]

The collector has three parts as before. The supplier creates an empty TreeSet. The
accumulator adds a single String from the Stream to the TreeSet. The combiner adds all
of the elements of one TreeSet to another in case the operations were done in parallel and
need to be merged.

We started with the long signature because that’s how you implement your own
collector. It is important to know how to do this for the exam and to understand how
collectors work. In practice, there are many common collectors that come up over and
over. Rather than making developers keep reimplementing the same ones, Java provides
an interface with common collectors. This approach also makes the code easier to read
because it is more expressive. For example, we could rewrite the previous example as
follows:

196 Chapter 4 = Functional Programming

Stream<String> stream = Stream.of("w", "o", "1", "f");
TreeSet<String> set = stream.collect(Collectors.toCollection(TreeSet::new));
System.out.println(set); // [f, 1, o, w]

If we didn’t need the set to be sorted, we could make the code even shorter:
Stream<String> stream = Stream.of("w", "o", "1", "f");

Set<String> set = stream.collect(Collectors.toSet());
System.out.println(set); // [f, w, 1, o]

You might get different output for this last one since toSet () makes no guarantees as
to which implementation of Set you’ll get. It is likely to be a HashSet, but you shouldn’t
expect or rely on that.

The exam expects you to know about common predefined collectors in
TE addition to being able to write your own by passing a supplier, accumula-
tor, and combiner.
Later in this chapter, we will show many Collectors that are used for grouping data.

It’s a big topic, so it’s best to master how streams work before adding too many Collectors
into the mix.

Using Common Intermediate Operations

Unlike a terminal operation, intermediate operations deal with infinite streams simply by
returning an infinite stream. Since elements are produced only as needed, this works fine.
The assembly line worker doesn’t need to worry about how many more elements are com-
ing through and instead can focus on the current element.

filter()

The filter () method returns a Stream with elements that match a given expression. Here
is the method signature:

Stream<T> filter(Predicate<? super T> predicate)

This operation is easy to remember and very powerful because we can pass any
Predicate to it. For example, this filters all elements that begin with the letter m:

Stream<String> s = Stream.of("monkey", "gorilla", "bonobo");
s.filter(x -> x.startsWith("m")).forEach(System.out::print); // monkey
distinct()

The distinct() method returns a stream with duplicate values removed. The duplicates do
not need to be adjacent to be removed. As you might imagine, Java calls equals() to deter-
mine whether the objects are the same. The method signature is as follows:

Using Streams 197

Stream<T> distinct()
Here’s an example:

Stream<String> s = Stream.of("duck", "duck", "duck", "goose");
s.distinct().forEach(System.out::print); // duckgoose

limit() and skip()

The Timit() and skip() methods make a Stream smaller. They could make a finite stream
smaller, or they could make a finite stream out of an infinite stream. The method signatures
are shown here:

Stream<T> Llimit(int maxSize)
Stream<T> skip(int n)

The following code creates an infinite stream of numbers counting from 1. The skip()
operation returns an infinite stream starting with the numbers counting from 6, since it
skips the first five elements. The 1imit () call takes the first two of those. Now we have a
finite stream with two elements:

Stream<Integer> s = Stream.iterate(l, n -> n + 1);
s.skip(5).1imit(2).forEach(System.out::print); /] 67

map()

The map () method creates a one-to-one mapping from the elements in the stream to the ele-
ments of the next step in the stream. The method signature is as follows:

<R> Stream<R> map(Function<? super T, ? extends R> mapper)

This one looks more complicated than the others you have seen. It uses the lambda
expression to figure out the type passed to that function and the one returned. The return
type is the stream that gets returned.

The map () method on streams is for transforming data. Don’t confuse it
TE with the Map interface, which maps keys to values.
As an example, this code converts a list of String objects to a list of Integers represent-

ing their lengths:

Stream<String> s = Stream.of("monkey", "gorilla", "bonobo");
s.map(String::length).forEach(System.out::print); /] 676

Remember that String: :length is shorthand for the lambda x -> x.length(), which
clearly shows it is a function that turns a String into an Integer.

198 Chapter 4 = Functional Programming

flatMap()

The flatMap () method takes each element in the stream and makes any elements it con-
tains top-level elements in a single stream. This is helpful when you want to remove empty
elements from a stream or you want to combine a stream of lists. We are showing you the
method signature for consistency with the other methods, just so you don’t think we are
hiding anything. You aren’t expected to be able to read this:

<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper)

This gibberish basically says that it returns a Stream of the type that the function con-
tains at a lower level. Don’t worry about the signature. It’s a headache.

What you should understand is the example. This gets all of the animals into the same
level along with getting rid of the empty list:

List<String> zero = Arrays.asList();

List<String> one = Arrays.asList("Bonobo");

List<String> two = Arrays.asList("Mama Gorilla", "Baby Gorilla");
Stream<List<String>> animals = Stream.of(zero, one, two);

animals.flatMap(l -> l.stream()).forEach(System.out::println);

Here’s the output:

Bonobo
Mama Gorilla
Baby Gorilla

As you can see, it removed the empty list completely and changed all elements of each
list to be at the top level of the stream.

sorted()

The sorted() method returns a stream with the elements sorted. Just like sorting arrays,
Java uses natural ordering unless we specify a comparator. The method signatures are
these:

Stream<T> sorted()
Stream<T> sorted(Comparator<? super T> comparator)

Calling the first signature uses the default sort order:

Stream<String> s = Stream.of("brown-", "bear-");
s.sorted().forEach(System.out::print); // bear-brown-

Using Streams 199

Remember that we can pass a lambda expression as the comparator. For example, we
can pass a Comparator implementation:

Stream<String> s = Stream.of("brown bear-", "grizzly-");
s.sorted(Comparator.reverseOrder())
.forEach(System.out::print); // grizzly-brown bear-

Here we passed a Comparator to specify that we want to sort in the reverse of natural
sort order. Ready for a tricky one? Do you see why this doesn’t compile?

s.sorted(Comparator::reverseOrder); // DOES NOT COMPILE

Take a look at the method signatures again. Comparator is a functional inter-

face. This means that we can use method references or lambdas to implement it. The
Comparator interface implements one method that takes two String parameters and
returns an int. However, Comparator: :reverseOrder doesn’t do that. It is a reference
to a function that takes zero parameters and returns a Comparator. This is not com-
patible with the interface. This means that we have to use a method and not a method
reference. We bring this up to remind you that you really do need to know method ref-
erences well.

peek()
The peek () method is our final intermediate operation. It is useful for debugging because it

allows us to perform a stream operation without actually changing the stream. The method
signature is as follows:

Stream<T> peek(Consumer<? super T> action)

The most common use for peek() is to output the contents of the stream as it goes by.
Suppose that we made a typo and counted bears beginning with the letter g instead of b.
We are puzzled why the count is 1 instead of 2. We can add a peek() to find out why:

Stream<String> stream = Stream.of("black bear", "brown bear", "grizzly");
long count = stream.filter(s -> s.startsWith("g"))

.peek(System.out: :println).count(); /] grizzly
System.out.println(count); /] 1

When working with a Queue, peek()looks only at the first element. In a

TE stream, peek () looks at each element that goes through that part of the
stream pipeline. It's like having a worker take notes on how a particular
step of the process is doing.

200 Chapter 4 = Functional Programming

Danger: Changing State with peek()

Remember that peek() is intended to perform an operation without changing the result.
Here's a straightforward stream pipeline that doesn’t use peek().

List<Integer> numbers = new ArrayList<>();
List<Character> letters = new ArrayList<>();
numbers.add(1);

letters.add('a');

Stream<List<?>> stream = Stream.of(numbers, letters);
stream.map(List::size).forEach(System.out::print); // 11

We can add a proper peek() operation:

StringBuilder builder = new StringBuilder();

Stream<List<?>> good = Stream.of(numbers, letters);

good.peek(l -> builder.append(1l)).map(List::size).forEach(System.out::print); // 11
System.out.println(builder); // [1][a]

In this example, you can see that peek () updates a StringBuilder variable that doesn’t
affect the result of the stream pipeline. It still prints 11. Java doesn’t prevent us from writ-
ing bad peek code:

Stream<List<?>> bad = Stream.of(numbers, letters);
bad.peek(l -> l.remove(0)).map(List::size).forEach(System.out::print); // 00

This example is bad because peek() is modifying the data structure that is used in the
stream, which causes the result of the stream pipeline to be different than if the peek
wasn't present.

Putting Together the Pipeline

Streams allow you to use chaining and express what you want to accomplish rather than
how to do so. Let’s say that we wanted to get the first two names alphabetically that are
four characters long. In Java 7, we’d have to write something like the following:

List<String> list = Arrays.asList("Toby", "Anna", "Leroy", "Alex");
List<String> filtered = new ArrayList<>();
for (String name: list) {
if (name.length() == 4) filtered.add(name);
}
Collections.sort(filtered);
Iterator<String> iter = filtered.iterator();

Using Streams 201

if (diter.hasNext()) System.out.println(iter.next());
if (iter.hasNext()) System.out.println(iter.next());

This works. It takes some reading and thinking to figure out what is going on. The prob-
lem we are trying to solve gets lost in the implementation. It is also very focused on the how
rather than on the what. In Java 8, the equivalent code is as follows:

List<String> list = Arrays.asList("Toby", "Anna", "Leroy", "Alex");
list.stream().filter(n -> n.length() == 4).sorted()
.1imit(2).forEach(System.out::println);

Before you say that it is harder to read, we can format it:

stream.filter(n -> n.length() == 4)
.sorted()
Limit(2)
.forEach(System.out: :println);

The difference is that we express what is going on. We care about String objects of
length 4. Then we then want them sorted. Then we want to first two. Then we want to
print them out. It maps better to the problem that we are trying to solve, and it is simpler
because we don’t have to deal with counters and such.

Once you start using streams in your code, you may find yourself using them in many
places. Having shorter, briefer, and clearer code is definitely a good thing!

In this example, you see all three parts of the pipeline. Figure 4.5 shows how each inter-
mediate operation in the pipeline feeds into the next.

FIGURE 4.5 Stream pipeline with multiple intermediate operations

stream() | fiter()—» sorted() ——» limit() | fOrEAch()
—— —

Remember that the assembly line foreman is figuring out how to best implement the
stream pipeline. He sets up all of the tables with instructions to wait before starting. He
tells the 1imit () worker to inform him when two elements go by. He tells the sorted()
worker that she should just collect all of the elements as they come in and sort them all at
once. After sorting, she should start passing them to the 1imit() worker one at a time. The
data flow looks like this:

1. stream() sends Toby to filter(). filter() sees that the length is good and sends Toby
to sorted(). sorted() can’t sort yet because it needs all of the data, so it holds Toby.

2. stream() sends Anna to filter(). filter() sees that the length is good and sends Anna
to sorted(). sorted() can’t sort yet because it needs all of the data, so it holds Anna.

202 Chapter 4 = Functional Programming

3. stream() sends Leroy to filter(). filter() sees that the length is not a match, and it
takes Leroy out of the assembly line processing.

4. stream() sends Alex to filter (). filter() sees that the length is good and sends Alex
to sorted(). sorted() can’t sort yet because it needs all of the data, so it holds Alex. It
turns out sorted() does have all of the required data, but it doesn’t know it yet.

5. The foreman lets sorted() know that it is time to sort and the sort occurs.

6. sorted() sends Alex to Limit(). limit() remembers that it has seen one element and
sends Alex to forEach(), printing Alex.

7. sorted() sends Anna to limit(). limit() remembers that it has seen two elements
and sends Anna to forEach(), printing Anna.

8. limit() has now seen all of the elements that are needed and tells the foreman. The
foreman stops the line, and no more processing occurs in the pipeline.

Make sense? Let’s try two more examples to make sure that you understand this well.

What do you think the following does?

Stream.generate(() -> "Elsa")
.filter(n -> n.length() == 4)
.sorted()

Limit(2)
.forEach(System.out::println);

It actually hangs until you kill the program or it throws an exception after running out
of memory. The foreman has instructed sorted() to wait until everything to sort is present.
That never happens because there is an infinite stream. What about this example?

Stream.generate(() -> "Elsa")
.filter(n -> n.length() == 4)
Limit(2)

.sorted()
.forEach(System.out::println);

This one prints Elsa twice. The filter lets elements through and 1imit() stops the earlier
operations after two elements. Now sorted() can sort because we have a finite list. Finally,
what do you think this does?

Stream.generate(() -> "Olaf Lazisson")
.filter(n -> n.length() == 4)
LLimit(2)

.sorted()
.forEach(System.out::println);

This one hangs as well until we kill the program. The filter doesn’t allow anything
through, so 1imit() never sees two elements. This means that we have to keep waiting and
hope that they show up.

Using Streams

203

@ Real World Scenario

Peeking behind the Scenes

The peek() method is useful for seeing how a stream pipeline works behind the scenes.
Remember that the methods run against each element one at a time until processing is
done. Suppose that we have this code:

Stream<Integer> infinite = Stream.iterate(l, x -> x + 1);
infinite.limit(5)
filter(x -> x % 2 == 1)
.forEach(System.out::print); // 135

The source is an infinite stream of odd numbers. Only the first five elements are allowed
through before the foreman instructs work to stop. The filter operation is limited to see-
ing if these five numbers from 1 to 5 are odd. Only three are, and those are the ones that
get printed, giving 135.

Now what do you think this prints?

Stream<Integer> infinite = Stream.iterate(l, x -> x + 1);
infinite.limit(5)
.peek(System.out::print)
filter(x -> x % 2 == 1)
.forEach(System.out::print);

The correct answer is 11233455. As the first element passes through, 1 shows up in the
peek() and print(). The second element makes it past the 1imit() and peek(), but it
gets caught in the filter (). The third and fifth elements behave like the first element.
The fourth behaves like the second.

Reversing the order of the intermediate operations changes the result:

Stream<Integer> infinite = Stream.iterate(l, x -> x + 1);
infinite.filter(x -> x % 2 == 1)

LLimit(5)

.forEach(System.out::print); // 13579

The source is still an infinite stream of odd numbers. The first element still flows
through the entire pipeline and 1limit() remembers that it allows one element
through. The second element doesn’t make it past filter (). The third element
flows through the entire pipeline and limit() prevents its second element. This
proceeds until the ninth element flows through and limit() has allowed its fifth
element through.

204 Chapter 4 = Functional Programming

Finally, what do you think this prints?

Stream<Integer> infinite = Stream.iterate(l, x -> x + 1);
infinite.filter(x -> x % 2 == 1)

.peek(System.out::print)

LLimit(5)

.forEach(System.out::print);

The answer is 1133557799. Since filter () is before peek(), we see only the odd
numbers.

Printing a Stream

When code doesn’t work as expected, it is traditional to add a println() or set a break-
point to see the values of an object. With streams, this is trickier. Since intermediate opera-
tions don’t run until needed, and Java is free to make them more efficient, new techniques
are needed. Table 4.5 shows some options for printing out the contents of a stream. You’ll
find that you have less need to print out the values of a stream as you get more practice
with stream pipelines. While learning, printing is really helpful!

TABLE 4.5 How to print astream

Works for Infinite Destructive to
Option Streams? Stream?
s.forEach(System.out: :println); No Yes
System.out.println(s.collect(Collectors. No Yes
toList()));
s.peek(System.out: :println).count(); No No
s.limit(5).forEach(System.out::println); Yes Yes

Notice that most of the approaches are destructive. This means that you cannot use the
stream anymore after printing. This is fine when you are getting started and just want to
see what the code does. It’s a problem if you are trying to find out what a stream looks like
as it passes through a certain part of the pipeline.

Also, notice that only one of the approaches works for an infinite stream. It limits the
number of elements in the stream before printing. If you try the others with an infinite
stream, they will run until you kill the program.

Working with Primitives 205

Working with Primitives

Up until now, we have been using wrapper classes when we needed primitives to go into
streams. We did this with the Collections API so it would feel natural. With streams,
there are also equivalents that work with the int, double, and long primitives. Let’s take a
look at why this is needed. Suppose that we want to calculate the sum of numbers in a finite
stream:

Stream<Integer> stream = Stream.of(1l, 2, 3);
System.out.println(stream.reduce(0, (s, n) -> s + n));

Not bad. It wasn’t hard to write a reduction. We started the accumulator with zero. We
then added each number to that running total as it came up in the stream. There is another
way of doing that:

Stream<Integer> stream = Stream.of(1l, 2, 3);
System.out.println(stream.mapToInt(x -> x).sum());

This time, we converted our Stream<Integer> to an IntStream and asked the IntStream
to calculate the sum for us. The primitive streams know how to perform certain common
operations automatically.

So far, this seems like a nice convenience but not terribly important. Now think about
how you would compute an average. You need to divide the sum by the number of ele-
ments. The problem is that streams allow only one pass. Java recognizes that calculating an
average is a common thing to do, and it provides a method to calculate the average on the
stream classes for primitives:

IntStream intStream = IntStream.of(1, 2, 3);
OptionalDouble avg = 1intStream.average();
System.out.println(avg.getAsDouble());

Not only is it possible to calculate the average, but it is also easy to do so. Clearly primi-
tive streams are important. We will look at creating and using such streams, including
optionals and functional interfaces.

Creating Primitive Streams

Here are three types of primitive streams:

= IntStream: Used for the primitive types int, short, byte, and char
= LongStream: Used for the primitive type long

= DoubleStream: Used for the primitive types double and float

Why doesn’t each primitive type have its own primitive stream? These three are the most
common, so the API designers went with them.

206 Chapter 4 = Functional Programming

When you see the word stream on the exam, pay attention to the case.

OTE With a capital Sorin code, Streamis the name of a class that contains an
Object type. With a lowercase s, a stream is a concept that might be a
Stream, DoubleStream, IntStream, or LongStream.

Some of the methods for creating a primitive stream are equivalent to how we created
the source for a regular Stream. You can create an empty stream with this:

DoubleStream empty = DoubleStream.empty();

Another way is to use the of () factory method from a single value or by using the vara-
rgs overload:

DoubleStream oneValue = DoubleStream.of(3.14);
DoubleStream varargs = DoubleStream.of(1.0, 1.1, 1.2);
oneValue.forEach(System.out::println);
System.out.println();
varargs.forEach(System.out::println);

This code outputs the following:

3.14

It works the same way for each type of primitive stream. You can also use the two meth-
ods for creating infinite streams, just like we did with Stream:

DoubleStream random = DoubleStream.generate(Math::random);
DoubleStream fractions = DoubleStream.iterate(.5, d -> d / 2);
random.limit(3).forEach(System.out::println);
System.out.println();
fractions.limit(3).forEach(System.out::println);

Since the streams are infinite, we added a limit intermediate operation so that the output
doesn’t print values forever. The first stream calls a static method on Math to get a random
double. Since the numbers are random, your output will obviously be different. The second
stream keeps creating smaller numbers, dividing the previous value by two each time. The
output from when we ran this code was as follows:

0.07890654781186413
0.28564363465842346
0.6311403511266134

Working with Primitives 207

0.5
0.25
0.125

You don’t need to know this for the exam, but the Random class provides a method to get
primitives streams of random numbers directly. Fun fact! For example, ints() generates an
infinite stream of int primitives.

When dealing with int or long primitives, it is common to count. Suppose that we
wanted a stream with the numbers from 1 through 5. We could write this using what we’ve
explained so far:

IntStream count = IntStream.iterate(l, n -> n+l).Llimit(5);
count.forEach(System.out::println);

This code does print out the numbers 1-5, one per line. However, it is a lot of code to do
something so simple. Java provides a method that can generate a range of numbers:

IntStream range = IntStream.range(l, 6);
range.forEach(System.out::println);

This is better. The range() method indicates that we want the numbers 1-6, not includ-
ing the number 6. However, it still could be clearer. We want the numbers 1-5. We should
be able to type the number 5, and we can do so as follows:

IntStream rangeClosed = IntStream.rangeClosed(1l, 5);
rangeClosed. forEach(System.out::println);

Even better. This time we expressed that we want a closed range, or an inclu-
sive range. This method better matches how we express a range of numbers in plain
English.

The final way to create a primitive stream is by mapping from another stream type.
Table 4.6 shows that there is a method for mapping between any stream types.;

TABLE 4.6 Mapping methods between types of streams

Source Stream To Create To Create To Create To Create
Class Stream DoubleStream IntStream LongStream
Stream map mapToDouble mapToInt mapTolLong
DoubleStream mapToObj map mapToInt mapTolLong
IntStream mapToO0bj mapToDouble map mapTolLong

LongStream mapToObj mapToDouble mapToInt map

208 Chapter 4 = Functional Programming

Obviously, they have to be compatible types for this to work. Java requires a mapping
function to be provided as a parameter, for example:

Stream<String> objStream = Stream.of("penguin", "fish");
IntStream intStream = objStream.mapToInt(s -> s.length())

This function that takes an Object, which is a String in this case. The function returns
an int. The function mappings are intuitive here. They take the source type and return the
target type. In this example, the actual function type is ToIntFunction. Table 4.7 shows
the mapping function names. As you can see, they do what you might expect.

TABLE 4.7 Function parameters when mapping between types of streams

Source Stream To Create To Create To Create To Create

Class Stream DoubleStream IntStream LongStream

Stream Function ToDoubleFunction ToIntFunction ToLongFunction

DoubleStream Double DoubleUnary DoubleToInt DoubleTolLong
Function Operator Function Function

IntStream IntFunction IntToDouble IntUnary IntTolLong

Function Operator Function

LongStream Long LongToDouble LongToInt LongUnary

Function Function Function Operator

You do have to memorize Table 4.6 and Table 4.7. It’s not as hard as it might seem. There
are patterns in the names if you remember a few rules. For Table 4.6, mapping to the same
type you started with is just called map (). When returning an object stream, the method is
mapToObj (). Beyond that, it’s the name of the primitive type in the map method name.

For Table 4.7, you can start by thinking about the source and target types. When the tar-
get type is an object, you drop the To from the name. When the mapping is to the same type
you started with, you use a unary operator instead of a function for the primitive streams.

- You can also create a primitive stream from a Stream using flatMapToInt(),
,&TE flatMapToDouble(), or flatMapToLong(). For example, IntStream 1ints =
list.stream().flatMapToInt(x -> IntStream.of(x));

Using Optional with Primitive Streams

Earlier in the chapter, we wrote a method to calculate the average of an int[] and prom-
ised a better way later. Now that you know about primitive streams, you can calculate the
average in one line:

Working with Primitives 209

IntStream stream = IntStream.rangeClosed(1,10);
OptionalDouble optional = stream.average();

The return type is not the Optional you have become accustomed to using. It is a new
type called OptionalDouble. Why do we have a separate type, you might wonder? Why not
just use Optional<Double>? The difference is that OptionalDouble is for a primitive and
Optional<Double> is for the Double wrapper class. Working with the primitive optional
class looks similar to working with the Optional class itself:

optional.ifPresent(System.out::println);
System.out.println(optional.getAsDouble());
System.out.println(optional.orElseGet(() -> Double.NaN));

The only noticeable difference is that we called getAsDouble() rather than get().
This makes it clear that we are working with a primitive. Also, orElseGet() takes a
DoubleSupplier instead of a Supplier.

As with the primitive streams, there are three type-specific classes for primitives.
Table 4.8 shows the minor differences among the three. You probably won’t be surprised
that you have to memorize it as well. This is really easy to remember since the only thing
that changes is the primitive name. As you should remember from the terminal operations
section, a number of stream methods return an optional such as min() or findAny (). These
each return the corresponding optional type. The primitive stream implementations also add
two new methods that you need to know. The sum() method does not return an optional. If
you try to add up an empty stream, you simply get zero. The avg() method always returns
an OptionalDouble, since an average can potentially have fractional data for any type.

TABLE 4.8 Optional types for primitives

OptionalDouble OptionallInt OptionallLong
Getting as a primitive getAsDouble() getAsInt() getAslLong()
orElseGet() DoubleSupplier IntSupplier LongSupplier
parameter type
Return type of max() OptionalDouble OptionalInt Optionallong
Return type of sum() double int long
Return type of avg() OptionalDouble OptionalDouble OptionalDouble

Let’s try an example to make sure that you understand this:

5: LongStream longs = LongStream.of(5, 10);
6: long sum = longs.sum();
7: System.out.println(sum); // 15

210 Chapter 4 = Functional Programming

8: DoubleStream doubles = DoubleStream.generate(() -> Math.PI);
9: OptionalDouble min = doubles.min(); // runs qinfinitely

Line 5 creates a stream of long primitives with two elements. Line 6 shows that we don’t
use an optional to calculate a sum. Line 8 creates an infinite stream of double primitives.
Line 9 is there to remind you that a question about code that runs infinitely can appear
with primitive streams as well.

Summarizing Statistics

You’ve learned enough to be able to get the maximum value from a stream of int primi-
tives. If the stream is empty, we want to throw an exception:

private static int max(IntStream ints) {
OptionalInt optional = dnts.max();
return optional.orElseThrow(RuntimeException: :new);

This should be old hat by now. We got an OptionalInt because we have an
IntStream. If the optional contains a value, we return it. Otherwise, we throw a new
RuntimeException.

Now we want to change the method to take an IntStream and return a range. The range
is the minimum value subtracted from the maximum value. Uh-oh. Both min() and max()
are terminal operations, which means that they use up the stream when they are run. We
can’t run two terminal operations against the same stream. Luckily, this is a common prob-
lem and the primitive streams solve it for us with summary statistics. Statistic is just a big
word for a number that was calculated from data.

private static int range(IntStream ints) {
IntSummaryStatistics stats = ints.summaryStatistics();
if (stats.getCount() == 0) throw new RuntimeException();
return stats.getMax()-stats.getMin();

Here we asked Java to perform many calculations about the stream. This includes the
minimum, maximum, average, size, and the number of values in the stream. If the stream
were empty, we’d have a count of zero. Otherwise, we can get the minimum and maximum
out of the summary.

Learning the Functional Interfaces for Primitives

Remember when we told you to memorize Table 4.1, with the common functional inter-
faces, at the beginning of the chapter? Did you? If you didn’t, go do it now. We are about to

Working with Primitives 21

make it more involved. Just as there are special streams and optional classes for primitives,
there are also special functional interfaces.

Luckily, most of them are for the double, int, and long types that you saw for streams
and optionals. There is one exception, which is BooleanSupplier. We will cover that before
introducing the ones for double, int, and long.

Functional Interfaces for boolean

BooleanSupplier is a separate type. It has one method to implement:
boolean getAsBoolean()

It works just as you’ve come to expect from functional interfaces, for example:

12: BooleanSupplier bl = () -> true;

13: BooleanSupplier b2 = () -> Math.random() > .5;
14: System.out.println(bl.getAsBoolean());

15: System.out.println(b2.getAsBoolean());

Lines 12 and 13 each create a BooleanSupplier, which is the only functional interface
for boolean. Line 14 prints true, since it is the result of bl. Line 15 prints out true or
false, depending on the random value generated.

Functional Interfaces for double, int, and long

Most of the functional interfaces are for double, int, and long to match the streams and
optionals that we’ve been using for primitives. Table 4.9 shows the equivalent of Table 4.1
for these primitives. You probably won’t be surprised that you have to memorize it. Luckily,
you’ve memorized Table 4.1 by now and can apply what you’ve learned to Table 4.9.

TABLE 4.9 Common functional interfaces for primitives

Single Abstract

Functional Interfaces # Parameters Return Type Method
DoubleSupplier 0 double getAsDouble
IntSupplier int getAsInt
LongSupplier long getAslLong
DoubleConsumer 1 (double) void accept
IntConsumer 1 (int)

LongConsumer 1 (long)

DoublePredicate 1 (double) boolean test
IntPredicate 1 (int)

LongPredicate 1 (long)

212 Chapter 4 = Functional Programming

TABLE 4.10 Common functional interfaces for primitives (continued)

Single Abstract

Functional Interfaces # Parameters Return Type Method
DoubleFunction<R> 1 (doubtle) R apply
IntFunction<R> 1 (int)

LongFunction<R> 1 (long)

DoubleUnaryOperator 1 (double) double applyAsDouble
IntUnaryOperator 1 (int) int applyAsInt
LongUnaryOperator 1 (long) long applyAsLong
DoubleBinaryOperator 2 (double, double) double applyAsDouble
IntBinaryOperator 2 (int, 1int) int applyAsInt
LongBinaryOperator 2 (long, long) long applyAsLong

There are a few things to notice that are different between Table 4.1 and Table 4.9:

= Generics are gone from some of the interfaces, since the type name tells us what primitive
type is involved. In other cases, such as IntFunction, only the return type generic is needed.

= The single abstract method is often, but not always, renamed to reflect the primitive
type involved.

= BiConsumer, BiPredicate, and BiFunction are not in Table 4.9. The API designers
stuck to the most common operations. For primitives, the functions with two different
type parameters just aren’t used often.

In addition to Table 4.1 equivalents, some interfaces are specific to primitives. Table 4.10
lists these.

TABLE 4.10 Primitive-specific functional interfaces

Single Abstract

Functional Interfaces # Parameters Return Type Method
ToDoubleFunction<T> 1(T) double applyAsDouble
ToIntFunction<T> int applyAsInt
ToLongFunction<T> long applyAslLong
ToDoubleBiFunction<T, U> 2(T, U) double applyAsDouble
ToIntBiFunction<T, U> int applyAsInt

TolLongBiFunction<T, U> long applyAslLong

Working with Advanced Stream Pipeline Concepts

213

Single Abstract

Functional Interfaces # Parameters Return Type Method
DoubleToIntFunction 1 (double) int applyAsInt
DoubleToLongFunction 1 (double) long applyAslLong
IntToDoubleFunction 1(int) double applyAsDouble
IntToLongFunction 1(int) long applyAslLong
LongToDoubleFunction 1 (long) double applyAsDouble
LongToIntFunction 1 (long) int applyAsInt
ObjDoubleConsumer<T> 2 (T, double) void accept
ObjIntConsumer<T> 2 (T, int)

ObjLongConsumer<T> 2 (T, long)

We’ve been using functional interfaces all chapter long, so you should have a good grasp

of how to read the table by now. Let’s do one example just to be sure. Which functional
interface would you use to fill in the blank to make the following code compile?

double d = 1.0;
_________ fl=x ->1;
fl.applyAsInt(d);

When you see a question like this, look for clues. You can see that the functional inter-
face in question takes a double parameter and returns an int. You can also see that it has a
single abstract method named applyAsInt. The only functional interface meeting all three

of those criteria is DoubleToIntFunction.

Working with Advanced Stream
Pipeline Concepts

You’ve almost reached the end of learning about streams. We have only a few more top-
ics left. You’ll see the relationship between streams and the underlying data, chaining
Optional and grouping collectors.

Linking Streams to the Underlying Data
What do you think this outputs?

25: List<String> cats = new ArraylList<>();
26: cats.add("Annie");
27: cats.add("Ripley");

214 Chapter 4 = Functional Programming

28: Stream<String> stream = cats.stream();
29: cats.add("KC");
30: System.out.println(stream.count());

The correct answer is 3. Lines 25-27 create a List with two elements. Line 28 requests
that a stream be created from that List. Remember that streams are lazily evaluated. This
means that the stream isn’t actually created on line 28. An object is created that knows
where to look for the data when it is needed. On line 29, the List gets a new element. On
line 30, the stream pipeline actually runs. The stream pipeline runs first, looking at the
source and seeing three elements.

Chaining Optionals

By now, you are familiar with the benefits of chaining operations in a stream pipeline. A
few of the intermediate operations for streams are available for Optional.

Suppose that you are given an Optional<Integer> and asked to print the value, but
only if it is a three-digit number. Without functional programming, you could write the
following:

private static void threeDigit(Optional<Integer> optional) {
if (optional.isPresent()) { // outer if
Integer num = optional.get();
String string = "" + num;
if (string.length() == 3) // dinner if
System.out.println(string);
I

It works, but it contains nested i f statements. That’s extra complexity. Let’s try this
again with functional programming;:

private static void threeDigit(Optional<Integer> optional) {
optional.map(n -> "" + n) // part 1
.filter(s -> s.length() == 3) // part 2
.ifPresent(System.out::println); // part 3

This is much shorter and more expressive. With lambdas, the exam is fond of carving up
a single statement and identifying the pieces with a comment. We’ve done that here to show
what happens with both the functional programming and non-functional programming
approaches.

Suppose that we are given an empty Optional. The first approach returns false for the
outer if. The second approach sees an empty Optional and has both map () and filter()
pass it through. Then ifPresent() sees an empty Optional and doesn’t call the Consumer
parameter.

Working with Advanced Stream Pipeline Concepts 215

The next case is where we are given an Optional.of(4). The first approach returns
false for the inner if. The second approach maps the number 4 to the String "4". The fil-
ter then returns an empty Optional since the filter doesn’t match, and ifPresent() doesn’t
call the Consumer parameter.

The final case is where we are given an Optional.of (123). The first approach returns
true for both 1if statements. The second approach maps the number 123 to the String
"123". The filter than returns the same Optional, and ifPresent() now does call the
Consumer parameter.

Now suppose that we wanted to get an Optional<Integer> representing the length of
the String contained in another Optional. Easy enough:

Optional<Integer> result = optional.map(String::length);

What if we had a helper method that did the logic of calculating something for us and it
had the signature static Optional<Integer> calculator(String s)? Using map doesn’t
work:

Optional<Integer> result = optional.map(ChainingOptionals::calculator); // DOES
NOT COMPILE

@ Real World Scenario
Checked Exceptions and Functional Interfaces

You might have noticed by now that the functional interfaces do not declare checked
exceptions. This is normally OK. However, it is a problem when working with methods
that declare checked exceptions. Suppose that we have a class with a method that throws
a checked exception:

import java.io.*;

import java.util.*;

public class ExceptionCaseStudy {
private static List<String> create() throws IOException {
throw new IOException();

}

Now we use it in a stream:

ExceptionCaseStudy.create().stream().count();

216 Chapter 4 = Functional Programming

Nothing new here. The create() method throws a checked exception. The calling
method handles or declares it. Now what about this one?

Supplier<List<String>> s = ExceptionCaseStudy::create; // DOES NOT COMPILE
The actual compiler error is
<code>unhandled exception type IOException

Say what now? The problem is that the lambda to which this method reference expands
does declare an exception. The Supplier interface does not allow checked exceptions.
There are two approaches to get around this problem. One is to catch the exception and
turn it into an unchecked exception:

Supplier<List<String>> s = () -> {
try {
return ExceptionCaseStudy.create();
} catch (IOException e) {
throw new RuntimeException(e);

s

This works. But the code is ugly. One of the benefits of functional programming is that the
code is supposed to be easy to read and concise. Another alternative is to create a wrap-
per method with the try/catch:

private static List<String> createSafe() {
try {
return ExceptionCaseStudy.create();
} catch (IOException e) {
throw new RuntimeException(e);

i

Now we can use the safe wrapper in our Supplier without issue:

Supplier<List<String>> s2 = ExceptionCaseStudyHelper::createSafe;

The problem is that calculator returns Optional<Integer>. The map () method adds
another Optional, giving us Optional<Optional<Integer>>. Well, that’s no good. The
solution is to call flatMap() instead:

Optional<Integer> result = optional.flatMap(ChainingOptionals::calculator);

Working with Advanced Stream Pipeline Concepts 217

This one works because flatMap removes the unnecessary layer. In other words, it flat-
tens the result. Chaining calls to flatMap() is useful when you want to transform one

Optional type to another.

Collecting Results

You’re almost finished learning about streams. The last topic builds on what you’ve learned
so far to group the results. Early in the chapter, you saw the collect() terminal operation.
There are many predefined collectors, including those shown in Table 4.11. We will look at
the different types of collectors in the following sections.

TABLE 4.11 Examples of grouping/partitioning collectors

Collector

Description

Return Value When Passed
to collect

averagingDouble(ToDoubleFunction f)
averagingInt(ToIntFunction f)
averaginglLong(ToLongFunction f)

counting()

groupingBy (Function f)
groupingBy (Function f,
Collector dc)

groupingBy (Function f,
Supplier s, Collector dc)

joining()
joining(CharSequence cs)

maxBy (Comparator c)
minBy (Comparator c)

mapping(Function f,
Collector dc)

partitioningBy(Predicate p)
partitioningBy(Predicate p,
Collector dc)

Calculates the aver-
age for our three core
primitive types

Counts number of ele-
ments

Creates a map group-
ing by the specified
function with the
optional type and
optional downstream
collector

Creates a single String
using cs as a delimiter
between elements if
one is specified

Finds the largest/small-
est elements

Adds another level of
collectors

Creates a map group-
ing by the specified
predicate with the
optional further down-
stream collector

Double

Long

Map<K, List<T>>

String

Optional<T>

Collector

Map<Boolean, List<T>>

218 Chapter 4 = Functional Programming

TABLE 4.11 Examples of grouping/partitioning collectors (continued)

Return Value When Passed

Collector Description to collect
summarizingDouble (ToDoubleFunction f) Calculates average, DoubleSummaryStatistics
summarizingInt(ToIntFunction f) min, max, and so on IntSummaryStatistics
summarizinglLong(ToLongFunction f) LongSummaryStatistics

summingDouble (ToDoubleFunction f) Calculatesthe sum for Double
summingInt(ToIntFunction f) our three core primitive

. . Integer
summingLong(ToLongFunction f) types
Long

toList() Creates an arbitrary List
toSet () type of list or set Set
toCollection(Supplier s) Creates a Collection Collection

of the specified type
toMap (Function k, Function v) Creates a map using Map
toMap (Function k, Function v, functions to map the
BinaryOperator m) keys, values, an optional
toMap (Function k, Function v, merge function, and an
BinaryOperator m, optional type

Supplier s)

Collecting Using Basic Collectors

Luckily, many of these collectors work in the same way. Let’s look at an example:

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");
String result = ohMy.collect(Collectors.joining(", "));
System.out.println(result); // lions, tigers, bears

Notice how the predefined collectors are in the Collectors class rather than the Collector
class. This is a common theme, which you saw with Collection vs. Collections. We pass the
predefined joining() collector to the collect() method. All elements of the stream are then
merged into a String with the specified delimiter between each element.

It is very important to pass the Collector to the collect method. It exists to help col-
lect elements. A Collector doesn’t do anything on its own.

Let’s try another one. What is the average length of the three animal names?

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");
Double result = ohMy.collect(Collectors.averagingInt(String::length));
System.out.println(result); // 5.333333333333333

Working with Advanced Stream Pipeline Concepts 219

The pattern is the same. We pass a collector to collect() and it performs the average
for us. This time, we needed to pass a function to tell the collector what to average. We
used a method reference, which returns an int upon execution. With primitive streams,
the result of an average was always a double, regardless of what type is being averaged. For
collectors, it is a Double since those need an Object.

Often, you’ll find yourself interacting with code that was written prior to Java 8. This
means that it will expect a Collection type rather than a Stream type. No problem. You
can still express yourself using a Stream and then convert to a Collection at the end, for
example:

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");

TreeSet<String> result = ohMy.filter(s -> s.startsWith("t")
.collect(Collectors.toCollection(TreeSet: :new));

System.out.println(result); // [tigers]

This time we have all three parts of the stream pipeline. Stream.of () is the source for
the stream. The intermediate operation is filter (). Finally, the terminal operation is col-
lect(), which creates a TreeSet. If we didn’t care which implement of Set we got, we
could have written Collectors.toSet() instead.

At this point, you should be able to use all of the Collectors in Table 4.11 except
groupingBy (), mapping(), partitioningBy(), and toMap().

Collecting into Maps

Collector code involving maps can get long. We will build it up slowly. Make sure that you
understand each example before going on to the next one. Let’s start out with a straightfor-
ward example to create a map from a stream:

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");
Map<String, Integer> map = ohMy.collect(

Collectors.toMap(s -> s, String::length));
System.out.println(map); // {lions=5, bears=5, tigers=6}

When creating a map, you need to specify two functions. The first function tells the
collector how to create the key. In our example, we use the provided String as the key.
The second function tells the collector how to create the value. In our example, we use the
length of the String as the value.

Returning the same value passed into a lambda is a common operation, so Java provides
a method for it. You can rewrite s -> s as Function.identity(). It is not shorter and may
or may not be clearer, so use your judgment on whether to use it.

Now we want to do the reverse and map the length of the animal name to the name
itself. Our first incorrect attempt is shown here:

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");

Map<Integer, String> map = ohMy.collect(Collectors.toMap(String::length, k ->
k)); // BAD

220 Chapter 4 = Functional Programming

Running this gives an exception similar to the following:

Exception in thread "main" java.lang.IllegalStateException: Duplicate key lions
at java.util.stream.Collectors.lambda$throwingMerger$114(Collectors.java:133)
at java.util.stream.Collectors$SLambda$3/1044036744.apply (Unknown Source)

What’s wrong? Two of the animal names are the same length. We didn’t tell Java what to do.
Should the collector choose the first one it encounters? The last one it encounters? Concatenate
the two? Since the collector has no idea what to do, it “solves” the problem by throwing an
exception and making it our problem. How thoughtful. Let’s suppose that our requirement is to
create a comma-separated String with the animal names. We could write this:

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");
Map<Integer, String> map = ohMy.collect(Collectors.toMap(

String::length, k -> k, (s1, s2) -> s1 + "," + s2));
System.out.println(map); // {5=lions,bears, 6=tigers}
System.out.println(map.getClass()); // class. java.util.HashMap

It so happens that the Map returned is a HashMap. This behavior is not guaranteed.

Suppose that we want to mandate that the code return a TreeMap instead. No problem. We
would just add a constructor reference as a parameter:

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");
TreeMap<Integer, String> map = ohMy.collect(Collectors.toMap(
String::length, k -> k, (sl, s2) -> sl + "," + s2, TreeMap::new));

System.out.println(map); // // {5=lions,bears, 6=tigers}
System.out.println(map.getClass()); // class. java.util.TreeMap

This time we got the type that we specified. With us so far? This code is long but not
particularly complicated. We did promise you that the code would be long!

Collecting Using Grouping, Partitioning, and Mapping

Now suppose that we want to get groups of names by their length. We can do that by say-
ing that we want to group by length:

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");

Map<Integer, List<String>> map = ohMy.collect(
Collectors.groupingBy (String::length));

System.out.println(map); // {5=[lions, bears], 6=[tigers]}

The groupingBy () collector tells collect() that it should group all of the elements of
the stream into lists, organizing them by the function provided. This makes the keys in the
map the function value and the values the function results.

Working with Advanced Stream Pipeline Concepts 221

Suppose that we don’t want a List as the value in the map and prefer a Set instead. No
problem. There’s another method signature that lets us pass a downstream collector. This is
a second collector that does something special with the values:

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");

Map<Integer, Set<String>> map = ohMy.collect(
Collectors.groupingBy(String::length, Collectors.toSet()));

System.out.println(map); // {5=[lions, bears], 6=[tigers]}

We can even change the type of Map returned through yet another parameter:

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");

TreeMap<Integer, Set<String>> map = ohMy.collect(
Collectors.groupingBy(String::length, TreeMap::new, Collectors.toSet()));

System.out.println(map); // {5=[lions, bears], 6=[tigers]}

This is very flexible. What if we want to change the type of Map returned but leave the
type of values alone as a List? There isn’t a method for this specifically because it is easy
enough to write with the existing ones:

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");

TreeMap<Integer, List<String>> map = ohMy.collect(
Collectors.groupingBy(String::length, TreeMap::new, Collectors.toList()));

System.out.println(map);

Partitioning is a special case of grouping. With partitioning, there are only two possible
groups—true and false. Partitioning is like splitting a list into two parts.

Suppose that we are making a sign to put outside each animal’s exhibit. We have two
sizes of signs. One can accommodate names with five or fewer characters. The other is
needed for longer names. We can partition the list according to which sign we need:

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");

Map<Boolean, List<String>> map = ohMy.collect(
Collectors.partitioningBy(s -> s.length() <= 5));

System.out.println(map); // {false=[tigers], true=[lions, bears]}

Here we passed a Predicate with the logic for which group each animal name belongs
in. Now suppose that we’ve figured out how to use a different font, and seven characters
can now fit on the smaller sign. No worries. We just change the Predicate:

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");

Map<Boolean, List<String>> map = ohMy.collect(
Collectors.partitioningBy(s -> s.length() <= 7));

System.out.println(map); // {false=[], true=[lions, tigers, bears]}

222 Chapter 4 = Functional Programming

Notice that there are still two keys in the map—one for each boolean value. It so hap-
pens that one of the values is an empty list, but it is still there. As with groupingBy (), we
can change the type of List to something else:

Debugging Complicated Generics

When working with collect(), there are often many levels of generics, making compiler
errors unreadable. Here are three useful techniques for dealing with this situation:

= Start over with a simple statement and keep adding to it. By making one tiny change
at a time, you will know which code introduced the error.

= Extract parts of the statement into separate statements. For example, try writing
Collectors.groupingBy(String::length, Collectors.counting());.Ifit
compiles, you know that the problem lies elsewhere. If it doesn’t compile, you have a
much shorter statement to troubleshoot.

= Use generic wildcards for the return type of the final statement, for example, Map<?,
?>. If that change alone allows the code to compile, you'll know that the problem lies
with the return type not being what you expect.

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");

Map<Boolean, Set<String>> map = ohMy.collect(
Collectors.partitioningBy(s -> s.length() <= 7, Collectors.toSet()));

System.out.println(map);// {false=[], true=[lions, tigers, bears]}

Unlike groupingBy (), we cannot change the type of Map that gets returned. However,
there are only two keys in the map, so does it really matter which Map type we use?

Instead of using the downstream collector to specify the type, we can use any of the
collectors that we’ve already shown. For example, we can group by the length of the animal
name to see how many of each length we have:

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");

Map<Integer, Long> map = ohMy.collect(Collectors.groupingBy(
String::length, Collectors.counting()));

System.out.println(map); // {5=2, 6=1}

Finally, there is a mapping() collector that lets us go down a level and add another
collector. Suppose that we wanted to get the first letter of the first animal alphabetically of
each length. Why? Perhaps for random sampling. The examples on this part of the exam
are fairly contrived as well. We’d write the following:

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");

Summary 223

Map<Integer, Optional<Character>> map = ohMy.collect(
Collectors.groupingBy(
String::length,
Collectors.mapping(s -> s.charAt(0),
Collectors.minBy(Comparator.naturalOrder()))));
System.out.println(map); // {5=Optional[b], 6=Optional[t]}

We aren’t going to tell you that this code is easy to read. We will tell you that it is the
most complicated thing you should expect to see on the exam. Comparing it to the previous
example, you can see that we replaced counting() with mapping(). It so happens that map-
ping() takes two parameters: the function for the value and how to group it further.

You might see collectors used with a static import to make the code shorter. This means
that you might see something like this:

Stream<String> ohMy = Stream.of("lions", "tigers", "bears");
Map<Integer, Optional<Character>> map = ohMy.collect(
groupingBy (
String::length,
mapping(s -> s.charAt(0),
minBy (Comparator.naturalOrder()))));
System.out.println(map); // {5=Optional[b], 6=Optionall[t]}

The code does the same thing as in the previous example. This means that it is impor-
tant to recognize the collector names because you might not have the Collectors class
name to call your attention to it.

There is one more collector called reducing(). You don’t need to know it for the exam.
It is a general reduction in case all of the previous collectors don’t meet your needs.

Summary

Lambdas can reference static variables, instance variables, effectively final parameters, and
effectively final local variables. A functional interface has a single abstract method. You
must know the functional interfaces:

= Supplier<T>: Method get() returns T

= Consumer<T>: Method accept(T t) returns void

= BiConsumer<T>: Method accept(T t, U u) returns void

= Predicate<T>: Method test(T t) returns boolean

= BiPredicate<T>: Method test(T t, U u) returns boolean
= Function<T, R>: Method apply (T t) returns R

= BiFunction<T, U, R>: Method apply(T t, U u) returnsR

224 Chapter 4 = Functional Programming

= UnaryOperator<T>: Method apply(T t) returns T
= BinaryOperator<T>: Method apply(T tl, T t2) returns T

An Optional can be empty or store a value. You can check if it contains a value with
ifPresent() and get() the value inside. There are also three methods that take func-
tional interfaces as parameters: ifPresent(Consumer c), orElseGet(Supplier s), and
orElseThrow(Supplier s). There are three optional types for primitives: DoubleSupplier,
IntSupplier, and LongSupplier. These have the methods getDouble(), getInt(), and
getlLong(), respectively.

A stream pipeline has three parts. The source is required, and it creates the data in
the stream. There can be zero or more intermediate operations, which aren’t executed
until the terminal operation runs. Examples of intermediate operations include filter(),
flatMap(), and sorted(). Examples of terminal operations include allMatch(), count(),
and forEach().

There are three primitive streams: DoubleStream, IntStream, and LongStream. In
addition to the usual Stream methods, they have range() and rangeClosed(). The call
range (1, 10) on IntStream and LongStream creates a stream of the primitives from 1 to
9. By contrast, rangeClosed (1, 10) creates a stream of the primitives from 1 to 10. The
primitive streams have math operations including average(), max (), and sum(). They also
have summaryStatistics() to get many statistics in one call. There are also functional
interfaces specific to streams. Except for BooleanSupplier, they are all for double, int, and
long primitives as well.

You can use a Collector to transform a stream into a traditional collection. You can
even group fields to create a complex map in one line. Partitioning works the same way as
grouping, except that the keys are always true and false. A partitioned map always has
two keys even if the value is empty for the key.

You should review the tables in the chapter. You absolutely must memorize Table 4.1.
You should memorize Table 4.6 and Table 4.7 but be able to spot incompatibilities, such as
type differences, if you can’t memorize these two. Finally, remember that streams are lazily
evaluated. They take lambdas or method references as parameters, which occur later when
the method is run.

Exam Essentials

Identify the correct functional interface given the number of parameters, return type, and
method name—and vice versa. The most common functional interfaces are Supplier,
Consumer, Function, and Predicate. There are also binary versions and primitive versions
of many of these methods.

Write code that uses Optional. Creating an Optional uses Optional.empty() or
Optional.of(). Retrieval frequently uses ifPresent() and get(). Alternatively, there are
the functional ifPresent() and orElseGet () methods.

Exam Essentials 225

Recognize which operations cause a stream pipeline to execute. Intermediate operations
do not run until the terminal operation is encountered. If no terminal operation is in the
pipeline, a Stream is returned but not executed. Examples of terminal operations include
collect(), forEach(), min(), and reduce().

Determine which terminal operations are reductions. Reductions use all elements of the
stream in determining the result. The reductions that you need to know are collect(),
count(), max(), min(), and reduce(). A mutable reduction collects into the same object as
it goes. The collect() method is a mutable reduction.

Write code for common intermediate operations. The filter () method returns a Stream
filtering on a Predicate. The map () method returns a Stream transforming each element to
another through a Function. The flatMap () method flattens nested lists into a single level

and removes empty lists.

Compare primitive streams to Stream. There are three primitive stream classes:
DoubleStream, IntStream, and LongStream. There are also three primitive Optional
classes: OptionalDouble, OptionalInt, and OptionalLong. There are a good number of
functional interfaces for primitives. Aside from BooleanSupplier, they all involve the dou-
ble, int, or long primitives.

Convert primitive stream types to other primitive stream types. Normally when mapping,
you just call the map () method. When changing the class used for the stream, a different
method is needed. To convert to Stream, you use mapToObj (). To convert to DoubleStream,
you use mapToDouble (). To convert to IntStream, you use mapToInt(). To convert to
LongStream, you use mapToLong().

Translate coding using method references into lambdas and vice versa. All code that uses
method references can be rewritten as a lambda. For example, stream. forEach(System.
out::println) does the same thing as stream. forEach(x -> System.out.println(x)).
Not all code that uses lambdas can be rewritten to use a method reference.

Use peek () to inspect the stream. The peek() method is an intermediate operation. It
executes a lambda or method reference on the input and passes that same input through
the pipeline to the next operator. It is useful for printing out what passes through a certain
point in a stream.

Search a stream. The findFirst() and findAny () methods return a single element from
a stream in an Optional. The anyMatch(), allMatch(), and noneMatch() methods return a
boolean. Be careful, because these three can hang if called on an infinite stream with some
data. All of these methods are terminal operations.

Sort a stream. The sorted() method is an intermediate operation that sorts a stream.
There are two versions: the signature with zero parameters that sorts using the natural sort
order, and the signature with one parameter that sorts using that Comparator as the sort
order.

226 Chapter 4 = Functional Programming

Review Questions

1. What is the output of the following?

Stream<String> stream = Stream.iterate("", (s) -> s + "1");
System.out.println(stream.limit(2).map(x -> x + "2"));

12112

212

212112
java.util.stream.ReferencePipeline$3@4517d9a3
The code does not compile.

An exception is thrown.

PmMmo o w®»

The code hangs.

2. What is the output of the following?

Predicate<? super String> predicate = s -> s.startsWith("g");
Stream<String> streaml = Stream.generate(() -> "growl! ");
Stream<String> stream2 = Stream.generate(() -> "growl! ");
boolean bl = streaml.anyMatch(predicate);

boolean b2 = stream2.allMatch(predicate);
System.out.println(bl + " " + b2);

true false

true true
java.util.stream.ReferencePipeline$3@4517d9a3
The code does not compile.

An exception is thrown.

mmo o ® >

The code hangs.

3. What is the output of the following?

Predicate<? super String> predicate = s -> s.length() > 3;
Stream<String> stream = Stream.iterate("-", (s) -> s + s);
boolean bl = stream.noneMatch(predicate);

boolean b2 = stream.anyMatch(predicate);
System.out.println(bl + " " + b2);

false true
false false
java.util.stream.ReferencePipeline$3@4517d9a3

Oow?s>

The code does not compile.

E.
F.

Review Questions 227

An exception is thrown.

The code hangs.

Which are true statements about terminal operations in a stream? (Choose all that apply.)

A
B.
C.
D
E

At most one terminal operation can exist in a stream pipeline.

Terminal operations are a required part of the stream pipeline in order to get a result.
Terminal operations have Stream as the return type.

The referenced Stream may be used after the calling a terminal operation.

The peek () method is an example of a terminal operation.

Which terminal operations on the Stream class are reductions? (Choose all that apply.)

A.
B.

moo

F.

collect()
count()
findFirst()
map ()
peek()
sum()

Which of the following can fill in the blank so that the code prints out false? (Choose all
that apply.)

Mmoo ®w >

Stream<String> s = Stream.generate(() -> "meow");
boolean match = s. (String::isEmpty);
System.out.println(match);

allMatch
anyMatch
findAny
findFirst
noneMatch

None of the above

We have a method that returns a sorted list without changing the original. Which of the
following can replace the method implementation to do the same with streams?

private static List<String> sort(List<String> list) {
List<String> copy = new ArraylList<>(list);
Collections.sort(copy, (a, b) -> b.compareTo(a));
return copy;

}

return list.stream()
.compare((a, b) -> b.compareTo(a))
.collect(Collectors.toList());

228

10.

Chapter 4 = Functional Programming

B. return list.stream()
.compare((a, b) -> b.compareTo(a))
.sort();

C. return list.stream()
.compareTo((a, b) -> b.compareTo(a))
.collect(Collectors.toList());

D. return list.stream()
.compareTo((a, b) -> b.compareTo(a))
.sort();

E. return list.stream()
.sorted((a, b) -> b.compareTo(a))
.collect();

F. return list.stream()
.sorted((a, b) -> b.compareTo(a))
.collect(Collectors.toList());

Which of the following are true given the declaration IntStream is = IntStream.
empty ()? (Choose all that apply.)

is.average() returns the type int.
is.average() returns the type OptionalInt.
is.findAny () returns the type int.
is.findAny () returns the type OptionalInt.

is.sum() returns the type int.

mTmo o w>

is.sum() returns the type OptionalInt.

Which of the following can we add after line 5 for the code to run without error and not
produce any output? (Choose all that apply.)

4: LongStream ls = LongStream.of(1, 2, 3);
5: OptionalLong opt = ls.map(n -> n * 10).filter(n -> n < 5).findFirst();

if (opt.isPresent()) System.out.println(opt.get());

if (opt.isPresent()) System.out.println(opt.getAsLong());
opt.ifPresent(System.out.println)
opt.ifPresent(System.out: :println)

None of these; the code does not compile.

Mmoo ® >

None of these; line 5 throws an exception at runtime.

Select from the following statements and indicate the order in which they would appear to
output 10 lines:

1.

12.

Review Questions

Stream.generate(() -> "1")

L: .filter(x -> x.length() > 1)
.forEach(System.out::println)
LLimit(10)

.peek(System.out: :println)

o =z =

L, N
L,N, O
L, N, M
L,N,M, O
L,O,M
N, M
N, O

emMmMOooOw®p

What changes need to be made for this code to print the string 12345? (Choose all that
apply.)

Stream.iterate(l, x -> x++).limit(5).map(x -> x).collect(Collectors.
joining());

Change Collectors.joining() to Collectors.joining("").

Change map(x -> x) tomap(x -> "" + x) .

Change x -> x++toXx -> ++X.

Add forEach(System.out: :print) after the call to collect().

Wrap the entire line in a System.out.print statement.

mmo o ®w >

None of the above. The code already prints 12345.
Which functional interfaces complete the following code? (Choose all that apply.)

x = String::new;
y = (a, b) -> System.out.println();
z =a->a+ a;

BiConsumer<String, String>
BiFunction<String, String>
BinaryConsumer<String, String>
BinaryFunction<String, String>
Consumer<String>
Supplier<String>
UnaryOperator<String>

Iom™MmMmOoOO®mP

UnaryOperator<String, String>

229

230 Chapter 4 = Functional Programming

13. Which of the following is true?

List<Integer> 11 = Arrays.asList(1, 2, 3);
List<Integer> 12 = Arrays.asList(4, 5, 6);
List<Integer> 13 = Arrays.asList();
Stream.of (11, 12, 13).map(x -> x + 1)

.flatMap(x -> x.stream()).forEach(System.out::print);

The code compiles and prints 123456.

The code compiles and prints 234567.

The code compiles but does not print anything.
The code compiles but prints stream references.
The code runs infinitely.

The code does not compile.

@MmMOUO®>

The code throws an exception
14. Which of the following is true?

Stream<Integer> s = Stream.of(1l);
IntStream is = s.mapToInt(x -> x);
DoubleStream ds = s.mapToDouble(x -> x);
Stream<Integer> s2 = ds.mapToInt(x -> x);
s2.forEach(System.out::print);

o N oo b

Line 4 does not compile.
Line 5 does not compile.
Line 6 does not compile.
Line 7 does not compile.
Line 8 does not compile.

The code throws an exception.

@PmMmo o

The code compiles and prints 1.

15. The partitioningBy () collector creates a Map<Boolean, List<String>> when passed to
collect() by default. When specific parameters are passed to partitioningBy(), which
return types can be created? (Choose all that apply.)

Map<boolean, List<String>>
Map<Boolean, Map<String>>
Map<Long, TreeSet<String>>
Map<Boolean, List<String>>
Map<Boolean, Set<String>>

mmo o ® >

None of the above

16.

17.

18.

Review Questions

What is the output of the following?

Stream<String> s = Stream.empty();

Stream<String> s2 = Stream.empty();

Map<Boolean, List<String>> p = s.collect(
Collectors.partitioningBy(b -> b.startsWith("c")));

Map<Boolean, List<String>> g = s2.collect(
Collectors.groupingBy(b -> b.startsWith("c")));

System.out.println(p + " " + g);

{3 {1

{} {false=[], true=[]}

{false=[], true=[]} {}

{false=[], true=[]} {false=[], true=[]}

The code does not compile.

mmo o ® >

An exception is thrown.

Which of the following is equivalent to this code?

UnaryOperator<Integer> u = x -> x * x;

BiFunction<Integer> f = x -> x*x;
BiFunction<Integer, Integer> f = x -> x*x;
BinaryOperator<Integer, Integer> f = x -> x*x;
Function<Integer> f = x -> x*x;

Function<Integer, Integer> f = x -> x*x;

Mmoo ® >

None of the above
What is the result of the following?

DoubleStream s = DoubleStream.of (1.2, 2.4);
s.peek(System.out::println).filter(x -> x > 2).count();

1

2

2.4

1.2and 2.4

There is no output.

The code does not compile.

PmMmMooO®p

An exception is thrown.

231

232 Chapter 4 = Functional Programming

19. Which of the following return primitives? (Choose all that apply.)
A. BooleanSupplier

CharSupplier

DoubleSupplier

FloatSupplier

IntSupplier

Mmoo w

StringSupplier
20. What is the simplest way of rewriting this code?

List<Integer> 1 = IntStream.range(l, 6)
.mapToObj (i -> 1i).collect(Collectors.tolList());
1.forEach(System.out::println);

A. IntStream.range(l, 6);

B. IntStream.range(l, 6)
.forEach(System.out::println);

C. IntStream.range(l, 6)
.mapToObj (1 -> 1)
.forEach(System.out::println);
None of the above is equivalent.

E. The provided code does not compile.

Dates, Strings,
and Localization

THE OCP EXAM TOPICS COVERED IN THIS
CHAPTER INCLUDE THE FOLLOWING:

v Use Java SE 8 Date/Time API

= Create and manage date-based and time-based events
including a combination of date and time into a single object
using LocalDate, LocalTime, LocalDateTime, Instant, Period
and Duration

= Work with dates and times across time zones and manage
changes resulting from daylight savings including Format
date and time values

= Define and create and manage date-based and time-based
events using Instant, Period, Duration and TemporalUnit
v Localization
= Read and set the local by using the Locale object
= Create and read a Properties file

= Build a resource bundle for each locale and load a resource
bundle in an application

You learned about the basics of Java 8 dates for the OCA. In
addition to reviewing these, we will cover more advanced date
concepts including time zones, daylight savings time, and com-
paring values and instants. Be sure to read the whole section, because Oracle goes deeper
into some topics that you’ve already learned.

You might notice that Strings are not listed in the exam objectives. Since they are such
a fundamental concept that might pop up in other questions, we will do a brief review here
as well.

After that, we will discuss how to make your application work in different languages
with localization. We will end with how to read and write numbers, dates, and money
using different international formats.

o
fes

Working with Dates and Times

In Java 8, Oracle completely revamped how we work with dates and times. You can still
write code the old way, but those classes aren’t on the exam. We’ll mention the old way
in real-world scenarios, so that you can learn the new way more easily if you learned Java
before version 8. Even if you are learning Java starting with version 8, this will help you
when you need to read older code. Just know that the old way is not on the exam.

You need an import to work with the date and time classes. Most of them are in the
java.time package. To use it, add this import to your program:

import java.time.*; // import time classes

Day vs. Date

In American English, the word date is used to represent two different concepts. Some-
times, it is the month/day/year combination when something happened, such as January
1,2000. Sometimes, it is the day of the month, such as today’s date is the 6th.

That's right; the words day and date are often used as synonyms. Be alert to this on the
exam, especially if you live someplace where people are more precise about this distinction.

In the following sections, we’ll look at creating, manipulating, and formatting dates and
times.

Working with Dates and Times 235

Creating Dates and Times

In the real world, we usually talk about dates and time zones as if the other person is
located near us. For example, if you say to me “I’ll call you at 11:00 on Tuesday morning,”
we assume that 11:00 means the same thing to both of us. But if I live in New York and
you live in California, we need to be more specific. California is three hours earlier than
New York because the states are in different time zones. You would instead say “I’ll call
you at 11:00 EST (eastern standard time) on Tuesday morning.” Unlike on the OCA, you
do have to know about time zones on the OCP.

When working with dates and times, the first thing to do is to decide how much information
you need. The exam gives you four choices:

LocalDate Contains just a date—no time and no time zone. A good example of
LocalDate is your birthday this year. It is your birthday for a full day, regardless of what
time it is.

LocalTime Contains just a time—no date and no time zone. A good example of
LocalTime is midnight. It is midnight at the same time every day.

LocalDateTime Contains both a date and time but no time zone. A good example of
LocalDateT1ime is “the stroke of midnight on New Year’s Eve.” Midnight on January 2 isn’t
nearly as special, making the date relatively unimportant, and clearly an hour after midnight
isn’t as special either.

ZonedDateTime Contains a date, time, and time zone. A good example of ZonedDateTime
is “a conference call at 9:00 a.m. EST.” If you live in California, you’ll have to get up really
early since the call is at 6:00 a.m. local time!

Oracle recommends avoiding time zones unless you really need them. Try to act as if
everyone is in the same time zone when you can.

As you may remember from the OCA, you obtain date and time instances using a
static method:

System.out.println(LocalDate.now());
System.out.println(LocalTime.now());
System.out.println(LocalDateTime.now());
System.out.println(ZonedDateTime.now());

Each of the four classes has a static method called now(), which gives the current date
and time. Your output is going to depend on the date/time when you run it and where you
live. The authors live in the United States, making the output look like the following when
run on May 25 at 9:13 a.m.:

2015-05-25

09:13:07.768

2015-05-25T09:13:07.768
2015-05-25T09:13:07.769-04:00[America/New_York]

236 Chapter 5 = Dates, Strings, and Localization

The key is the type of information in the output. The first line contains only a date and no
time. The second contains only a time and no date. The time displays hours, minutes, seconds,
and fractional seconds. The third contains both a date and a time. Java uses T to separate the date
and time when converting LocalDateTime to a String. Finally, the fourth adds the time zone off-
set and time zone. New York is four time zones away from Greenwich Mean Time (GMT).

Greenwich Mean Time is a time zone in Europe that is used as time zone zero when
discussing offsets. You might have also heard of Coordinated Universal Time, which is
a time zone standard. It is abbreviated as a UTC, as a compromise between the English
and French names. (That’s not a typo. UTC isn’t actually the proper acronym in either
language!) UTC uses the same time zone zero as GMT.

Let’s make sure that you understand how UTC works. We include names of the time
zones in the examples to make them easier to picture. The exam will give you the UTC
offset. You are not expected to memorize any time zones.

First, let’s try to figure out how far apart these moments are in time. Notice how India
has a half-hour offset, not a full hour. To approach a problem like this, you subtract the
time zone from the time. This gives you the GMT equivalent of the time:

2015-06-20T07:50+02:00[Europe/Paris] // GMT 2015-06-20 5:50
2015-06-20T06:50+05:30[Asia/Kolkata] // GMT 2015-06-20 1:20

After converting to GMT, you can see that the Paris time is four and a half hours behind
the Kolkata time.

) The time zone offset can be listed in different ways: +02:00, GMT+2, and
‘:gn

Py UTC+2 all mean the same thing. You might see any of them on the exam.

Let’s try another one, this time with GMT. Remember that you need to add when sub-
tracting a negative number.

2015-06-20TO7:50 GMT-04:00 // GMT 2015-06-20 11:50
2015-06-20T04:50 GMT-07:00 // GMT 2015-06-20 11:50

For this example, both moments in time are the same. The eastern U.S. time zone is
three hours ahead of the Pacific U.S. time zone.

If you have trouble remembering this, try to memorize one example where the time
zones are a few zones apart and remember the direction. In the United States, most people
know that the east coast is three hours ahead of the west coast. And most people know that
Asia is ahead of Europe. Just don’t cross time zone zero in the example that you choose to
remember. The calculation works the same way, but it isn’t as great a memory aid.

Speaking of which, how many hours apart are California in the Pacific U.S. time zone
and India? Try to work this one out on your own. Really, get a pen and write it out. You
need to be able to perform this math on the exam.

2015-06-20T07:50-07:00[US/Pacific]
2015-06-20T07:50+05:30[Asia/Kolkata]

Working with Dates and Times 231

The answer is 12 and a half hours. The first instance in time is GMT 14:50. The second
is GMT 2:20. No wonder calls between California and India aren’t convenient!

Wait—I Don’t Live in the United States

The exam recognizes that exam takers live all over the world, and it will not ask you about
the details of U.S. date and time formats.

In the United States, the month is written before the date. The exam won’t ask you about
the difference between 02/03/2015 and 03/02/2015. That would be mean and not interna-
tionally friendly, and it would be testing your knowledge of U.S. dates rather than your
knowledge of Java. That said, our examples do use U.S. date and time formats, as will the
questions on the exam. Just remember that the month comes before the date. Also Java
tends to use a 24-hour clock even though the United States uses a 12-hour clock with
a.m./p.m.

Now that you know how to create the current date and time, let’s look at other specific
dates and times. To begin, let’s create just a date with no time. Both of these examples cre-
ate the same date:

LocalDate datel = LocalDate.of(2015, Month.JANUARY, 20);
LocalDate date2 = LocalDate.of(2015, 1, 20);

Both pass in the year, month, and date. Although it is good to use the Month constants (to
make the code easier to read), you can pass the int number of the month directly. Just use
the number of the month the same way you would if you were writing the date in real life.

The method signatures are as follows:

public static LocalDate of(int year, int month, int dayOfMonth)
public static LocalDate of(int year, Month month, int dayOfMonth)

Month is an enum. Remember that an enum is not an int and cannot be compared to one,
for example:

12: Month month = Month.JANUARY;
13: boolean bl = month == 1; // DOES NOT COMPILE
14: boolean b2 = month == Month.APRIL; // false

Line 13 doesn’t compile because an enum is a different type than an int. Line 14 shows
how to compare enum values properly.

)’ Up to now, we've been continually telling you that Java counts starting
,d-rs with 0. Well, months are an exception. For months in the new date and
time methods, Java counts starting from 1, just as we humans do.

238 Chapter 5 = Dates, Strings, and Localization

When creating a time, you can choose how detailed you want to be. You can specify
just the hour and minute, or you can include the number of seconds. You can even include
nanoseconds if you want to be very precise. (A nanosecond is a billionth of a second,
though you probably won’t need to be that specific.)

LocalTime timel = LocalTime.of(6, 15);
LocalTime.of(6, 15, 30);

LocalTime.of(6, 15, 30, 200);

// hour and minute
LocalTime time2 = // + seconds

LocalTime time3 = // + nanoseconds

These three times are all different but within a minute of each other. The method signa-
tures are as follows:

public static LocalTime of(int hour, int minute)
public static LocalTime of(int hour, int minute, int second)
public static LocalTime of(int hour, int minute, int second, int nanos)

You can combine dates and times into one object:

LocalDateTime dateTimel = LocalDateTime.of (2015, Month.JANUARY, 20, 6, 15, 30);

LocalDateTime.of (datel, timel);

LocalDateTime dateTime2

The first line of code shows how you can specify all of the information about the
LocalDateTime right in the same line. There are many method signatures allowing you
to specify different things. Having that many numbers in a row gets to be hard to read,
though. The second line of code shows how you can create LocalDate and LocalTime
objects separately first and then combine them to create a LocalDateTime object.

Now there are a lot of method signatures since there are more combinations. The
method signatures are as follows:

public static LocalDateTime of(int year, 1int month,

int dayOfMonth, int hour, int minute)

public static LocalDateTime
int dayOfMonth, int hour,
public static LocalDateTime
int dayOfMonth, int hour,
public static LocalDateTime
int dayOfMonth, int hour,
public static LocalDateTime
int dayOfMonth, int hour,
public static LocalDateTime
int dayOfMonth, int hour,
public static LocalDateTime

In order to create a ZonedDateTime, we first need to get the desired time zone. We will

of (int year, int month,

int minute, 1int second)

of (int year, int month,

int minute, 1int second, int nanos)
of (int year, Month month,

int minute)

of (int year, Month month,

int minute, 1int second)

of (int year, Month month,

int minute, 1int second, int nanos)
of (LocalDate date, LocalTime time)

use US/Eastern in our examples:

Working with Dates and Times 239

ZoneIld zone = Zoneld.of("US/Eastern");
ZonedDateTime zonedl = ZonedDateTime.of(2015, 1, 20,
6, 15, 30, 200, zone);
ZonedDateTime zoned2 = ZonedDateTime.of(datel, timel, zone);
ZonedDateTime zoned3 = ZonedDateTime.of(dateTimel, zone);

We start by getting the time zone object. Then we use one of three approaches to create
the ZonedDateTime. The first passes all of the fields individually. We don’t recommend this
approach—there are too many numbers, and it is hard to read. A better approach is to pass
a LocalDate object and a LocalTime object, or a LocalDateTime object.

Although there are other ways of creating a ZonedDateT1ime, you only need to know
three for the exam:

public static ZonedDateTime of(int year, 1int month,

int dayOfMonth, int hour, int minute, int second, int nanos, ZoneIld zone)
public static ZonedDateTime of(LocalDate date, LocalTime time, ZoneId zone)
public static ZonedDateTime of(LocalDateTime dateTime, ZoneId zone)

Notice that there isn’t an option to pass in the Month enum. This seems like an oversight
from the API creators and something that will be fixed in future versions of Java.

Finding a Time Zone

Finding out your time zone is easy. You can just print out ZoneId.systemDefault(). If you
don’t know what another time zone is, Java provides a method to list the supported ones.
Using the functional programming techniques that you’ve learned, you can easily print
out a sorted list of the ones that are potential candidates:

Zoneld.getAvailableZoneIds().stream()
.filter(z -> z.contains("US") || z.contains("America"))
.sorted().forEach(System.out::println);

This printed 177 lines when we ran it. We prefer the US/Eastern time zone to America/
New_York since it is more general. There are so many time zones because there is a lot of
duplication. When writing code, try to use whatever is clearest. In the United States, most
people say “eastern” when talking about east coast time, so we like to use that in the code.

How do you know what to filter by? Try the country name or city name. Or you can print
everything and look though that. Or you could use Google to find out the name of the
target time zone.

Did you notice that we did not use a constructor in any of the examples? The date and
time classes have private constructors to force you to use the factory’s static methods. The
exam creators may throw something like this at you:

240 Chapter 5 = Dates, Strings, and Localization

LocalDate d = new LocalDate(); // DOES NOT COMPILE

Don’t fall for this. You are not allowed to construct a date or time object directly.
Another trick is what happens when you pass invalid numbers to of (), for example:

LocalDate.of (2015, Month.JANUARY, 32) // throws DateTimeException
You don’t need to know the exact exception that’s thrown, but it’s a clear one:

java.time.DateTimeException: Invalid value for DayOfMonth
(valid values 1-28/31): 32

@ Real World Scenario

Creating Dates in Java 7 and Earlier

You can see some of the problems with the old way in Table 5.1 There wasn’t a way
to specify just a date without the time. The Date class represented both the date and
time whether you wanted it to or not. Trying to create a specific date required more
code than it should have. Month indexes were 0 based instead of 1 based, which was
confusing.

There's a really old way to create a date. In Java 1.1, you create a specific Date with this:
Date jan = new Date(2015, Calendar.JANUARY, 1);.You could use the Calendar
class beginning with Java 1.2. Date exists mainly for backward compatibility and in
order that Calendar can work with code—making the new way the third way. The new
way, as shown in Table 5.1, is much better, so it looks like this is a case of the third time
is the charm!

TABLE 5.1 Oldvs. new way of creating dates

Old Way New Way (Java 8 and Later)
Importing import import
java.util.*; java.time.*;
Creating an object Date d = new LocalDate d =
with the current date Date(); LocalDate.now();
Creating an object Date d = new LocalDateTime dt
with the current date Date(); =
and time LocalDateTime.

now() ;

Working with Dates and Times P2y

TABLE 5.1 Old vs. new way of creating dates (continued)

Old Way New Way (Java 8 and Later)
Creating an object Calendar c = LocalDate jan =
representing January Calendar.getInstance(); LocalDate.of (2015,
1, 2015 c.set(2015, Month. JANUARY,

Calendar.JANUARY, 1); 1),

Date jan = c.getTime();

or

Calendar c = new
GregorianCalendar (2015,
Calendar.JANUARY, 1);
Date jan = c.getTime();

Creating January Calendar c = LocalDate jan =
1, 2015 without the Calendar.getInstance(); LocalDate.of (2015, 1,
constant c.set(2015, 0, 1); 1)

Date jan = c.getTime();

Manipulating Dates and Times

Adding to a date is easy. The date and time classes are immutable. As you learned
in Chapter 2, “Design Patterns and Principles,” this means that we need to remem-
ber to assign the results of these methods to a reference variable so that they are
not lost.

12: LocalDate date = LocalDate.of(2014, Month.JANUARY, 20);

13: System.out.println(date); // 2014-01-20
14: date = date.plusDays(2);

15: System.out.println(date); // 2014-01-22
16: date = date.plusWeeks(1l);

17: System.out.println(date); // 2014-01-29
18: date = date.plusMonths(1l);

19: System.out.println(date); // 2014-02-28
20: date = date.plusYears(5);

21: System.out.println(date); // 2019-02-28

This code is nice because it does just what it looks like. We start out with January 20,
2014. On line 14, we add two days to it and reassign it to our reference variable. On line
16, we add a week. This method allows us to write clearer code than plusDays (7). Now
date is January 29, 2014. On line 18, we add a month. This would bring us to February
29, 2014. However, 2014 is not a leap year. (2012 and 2016 are leap years.) Java is smart

242 Chapter 5 = Dates, Strings, and Localization

enough to realize that February 29, 2014, does not exist, and it gives us February 28, 2014,
instead. Finally, line 20 adds five years.

- February 29 exists only in a leap year. Leap years are years that are a mul-
‘érz tiple of 4 or 400 but not other multiples of 100. For example, 2000 and 2016
are leap years, but 2100 is not.

There are also nice, easy methods to go backward in time. This time, let’s work with
LocalDateTime:

22: LocalDate date = LocalDate.of(2020, Month.JANUARY, 20);
23: LocalTime time = LocalTime.of(5, 15);
24: LocalDateTime dateTime = LocalDateTime.of(date, time);

25: System.out.println(dateTime); // 2020-01-20T05:15
26: dateTime = dateTime.minusDays(1);

27: System.out.println(dateTime); // 2020-01-19T05:15
28: dateTime = dateTime.minusHours(10);

29: System.out.println(dateTime); // 2020-01-18T19:15
30: dateTime = dateTime.minusSeconds(30);

31: System.out.println(dateTime); // 2020-01-18T19:14:30

Line 25 prints the original date of January 20, 2020, at 5:15 a.m. Line 26 subtracts a
full day, bringing us to January 19, 2020, at 5:15 a.m. Line 28 subtracts 10 hours, show-
ing that the date will change if the hours cause it to adjust, and it brings us to January 18,
2020, at 19:15 (7:15 p.m.). Finally, line 30 subtracts 30 seconds. You can see that all of a
sudden the display value starts showing seconds. Java is smart enough to hide the seconds
and nanoseconds when we aren’t using them.

It is common for date and time methods to be chained. For example, without the print
statements, the previous example could be rewritten as follows:

LocalDate date = LocalDate.of (2020, Month.JANUARY, 20);

LocalTime time = LocalTime.of(5, 15);

LocalDateTime dateTime = LocalDateTime.of(date, time)
.minusDays(1).minusHours(10).minusSeconds(30);

When you have a lot of manipulations to make, this chaining comes in handy. There are
two ways that the exam creators can try to trick you. What do you think this prints?

LocalDate date = LocalDate.of (2020, Month.JANUARY, 20);
date.plusDays(10);
System.out.println(date);

Working with Dates and Times 243

It prints January 20, 2020. Adding 10 days was useless because the program ignored the
result. Whenever you see immutable types, pay attention to make sure that the return value
of a method call isn’t ignored. The exam also may test to see if you remember what each of
the date and time objects includes. Do you see what is wrong here?

LocalDate date = LocalDate.of (2020, Month.JANUARY, 20);
date = date.plusMinutes(1l); // DOES NOT COMPILE

LocalDate does not contain time. This means that you cannot add minutes to it. This
can be tricky in a chained sequence of addition/subtraction operations, so make sure that
you know which methods in Table 5.2 can be called on which types.

TABLE 5.2 Methodsin LocalDate, LocalTime, LocalDateTime, and ZonedDateTime

Can Call on
LocalDateTime
Can Call on Can Call on or
LocalDate? LocalTime? ZonedDateTime?
plusYears/ minusYears Yes No Yes
plusMonths/ minusMonths Yes No Yes
plusWeeks/ minusWeeks Yes No Yes
plusDays/ minusDays Yes No Yes
plusHours/ minusHours No Yes Yes
plusMinutes/ minusMinutes No Yes Yes
plusSeconds/ minusSeconds No Yes Yes
plusNanos/ minusNanos No Yes Yes

Manipulating Dates in Java 7 and Earlier

As you look at all the code in Table 5.3 to do time calculations in the old way, you can see
why Java needed to revamp the date and time APIs! The old way took a lot of code to do
something simple.

244 Chapter 5 = Dates, Strings, and Localization

TABLE 5.3 Oldvs. new way of creating dates

Old Way New Way (Java 8 and Later)
Adding a day public Date addDay(Date public LocalDate
date) { addDay (LocalDate date)
Calendar cal =
Calendar.getInstance(); return
cal.setTime(date); date.plusDays(1);
cal.add(Calendar.DATE, }
1);
return cal.getTime();
}
Subtracting a day public Date public LocalDate
subtractDay(Date date) { subtractDay(LocalDate
Calendar cal = date) {
Calendar.getInstance(); return
cal.setTime(date); date.minusDays(1);
cal.add(Calendar.DATE, }
-1)3
return cal.getTime();
}

Working with Periods

Now you know enough to do something fun with dates! Our zoo performs animal enrich-
ment activities to give the animals something fun to do. The head zookeeper has decided
to switch the toys every month. This system will continue for three months to see how it
works out.

public static void main(String[] args) {
LocalDate start = LocalDate.of(2015, Month.JANUARY, 1);
LocalDate end = LocalDate.of (2015, Month.MARCH, 30);
performAnimalEnrichment(start, end);

}

private static void performAnimalEnrichment(LocalDate start, LocalDate end) {
LocalDate upTo = start;

while (upTo.isBefore(end)) { // check if still before end
System.out.println("give new toy: " + upTo);
upTo = upTo.plusMonths(1); // add a month

}l

Working with Dates and Times 245

This code works fine. It adds a month to the date until it hits the end date. The problem
is that this method can’t be reused. Our zookeeper wants to try different schedules to see
which works best.

Converting to a long

LocalDate and LocalDateTime have a method to convert themselves into long equiva-
lents in relation to January 1, 1970. This special date is called the epoch. What's special
about 19707 That's what Unix started using for date standards, so Java reused it. And
don’t worry—you don’t have to memorize the names for the exam.

= LocalDate has toEpochDay (), which is the number of days since January 1, 1970.

= LocalDateTime and ZonedDateTime have toEpochSecond(), which is the number of
seconds since January 1, 1970.

= LocalTime does not have an epoch method. Since it represents a time that can
occur on any date, it doesn’t make sense to compare it to 1970. Although the exam
pretends that time zones don’t exist, you may be wondering if this special January
1, 1970, is in a specific time zone. The answer is yes. This special time refers to when
it was January 1, 1970, in GMT (Greenwich mean time). Greenwich is in England,
and GMT does not participate in daylight savings time. This makes it a good refer-
ence point.

Luckily, Java has a Period class that we can pass in. This code does the same thing as
the previous example:

public static void main(String[] args) {
LocalDate start = LocalDate.of(2015, Month.JANUARY, 1);
LocalDate end = LocalDate.of (2015, Month.MARCH, 30);

Period period = Period.ofMonths(1); // create a period
performAnimalEnrichment(start, end, period);

}

private static void performAnimalEnrichment(LocalDate start, LocalDate end,

Period period) { // uses the generic period
LocalDate upTo = start;
while (upTo.isBefore(end)) {
System.out.println("give new toy: " + upTo);
upTo = upTo.plus(period); // adds the period
}

The method can add an arbitrary period of time that gets passed in. This allows us to
reuse the same method for different periods of time as our zookeeper changes her mind.

246 Chapter 5 = Dates, Strings, and Localization

There are five ways to create a Period class:

Period annually = Perijod.ofYears(1); // every 1 year

Period quarterly = Period.ofMonths(3); // every 3 months
Period everyThreeWeeks = Period.ofWeeks(3); // every 3 weeks

Period everyOtherDay = Period.ofDays(2); // every 2 days

Period everyYearAndAWeek = Period.of(l, 0, 7); // every year and 7 days

There’s one catch. You cannot chain methods when creating a Period. The following
code looks like it is equivalent to the everyYearAndAWeek example, but it’s not. Only the
last method is used because the Period of___ methods are static methods.

Period wrong = Period.ofYears(1l).ofWeeks(1l); // every week
This tricky code is really like writing the following:

Period wrong = Period.ofYears(1);
wrong = Perijod.ofWeeks(1);

This is clearly not what you intended! That’s why the of () method allows you to pass in
the number of years, months, and days. They are all included in the same period. You will
get a compiler warning about this. Compiler warnings tell you that something is wrong or
suspicious without failing compilation.

The of () method takes only years, months, and days. The ability to use another factory
method to pass weeks is merely a convenience. As you might imagine, the actual period is
stored in terms of years, months, and days. When you print out the value, Oracle displays
any non-zero parts using the format shown in Figure 5.1.

FIGURE 5.1 Period format

System.out.printIn(Period.of)1,2,3));

P1Y2M3D
\# days
(m:ﬁcriggr) # months
y # years

As you can see, the P always starts out the String to show it is a period measure. Then
come the number of years, number of months, and number of days. If any of these are zero,
they are omitted.

Can you figure out what this outputs?

System.out.println(Period.ofMonths(3));

Working with Dates and Times 247

The output is P3M. Remember that Java omits any measures that are zero. Let’s try
another:

System.out.println(Period.of (0, 20, 47));

The output is P20M47D. There are no years, so that part is skipped. It’s OK to have more
days than are in a month. Also it is OK to have more months than are in a year. Java uses
the measures provided for each.

Now let’s try a tricky one:

System.out.println(Period.ofWeeks(3));

This one outputs P21D. Remember that week is not one of the units a Period stores.
Therefore, a week is converted to 7 days. Since we have 3 weeks, that’s 21 days.

The last thing to know about Period is what objects it can be used with. Let’s look at
some code:

3: LocalDate date = LocalDate.of(2015, 1, 20);

4: LocalTime time = LocalTime.of(6, 15);

5: LocalDateTime dateTime = LocalDateTime.of(date, time);

6: Period period = Period.ofMonths(1);

7: System.out.println(date.plus(period)); // 2015-02-20

8: System.out.println(dateTime.plus(period)); // 2015-02-20T06:15
9:

System.out.println(time.plus(period)); // UnsupportedTemporalTypeException

Lines 7 and 8 work as expected. They add a month to January 20, 20135, giving us
February 20, 2015. The first has only the date, and the second has both the date and
time.

Line 9 attempts to add a month to an object that has only a time. This won’t work.
Java throws an exception and complains that we attempted to use an Unsupported unit:
Months.

As you can see, you’ll have to pay attention to the type of date and time objects every
place you see them.

Working with Durations

You’ve probably noticed by now that a Period is a day or more of time. There is also
Duration, which is intended for smaller units of time. For Duration, you can specify the
number of days, hours, minutes, seconds, or nanoseconds. And yes, you could pass 365
days to make a year, but you really shouldn’t—that’s what Period is for.

Conveniently, Duration roughly works the same way as Period, except it is used with
objects that have time. Remember that a Period is output beginning with a P. Duration
is output beginning with PT, which you can think of as a period of time. A Duration
is stored in hours, minutes, and seconds. The number of seconds includes fractional
seconds.

248 Chapter 5 = Dates, Strings, and Localization

We can create a Duration using a number of different granularities:

Duration daily = Duration.ofDays(1); // PT24H

Duration hourly = Duration.ofHours(1); // PT1H

Duration everyMinute = Duration.ofMinutes(1); // PT1M

Duration everyTenSeconds = Duration.ofSeconds(10); // PT10S

Duration everyMilli = Duration.ofMillis(1l); // PT0.001S
Duration everyNano = Duration.ofNanos(1); // PT0.000000001S

This is similar to Period. We pass a number to the proper method. We also try to make
the code readable. We could say Duration.ofSeconds(3600) to mean one hour. That’s just
confusing. Although the exam prides itself on being confusing, it isn’t testing your math-
ematical ability in converting between units of dates.

Duration doesn’t have a constructor that takes multiple units like Period does. If you
want something to happen every hour and a half, you would specify 90 minutes.

Duration includes another more generic factory method. It takes a number and a
TemporalUnit. The idea is, say, something like “5 seconds.” However, TemporalUnit is an
interface. At the moment, there is only one implementation named ChronoUnit.

The previous example could be rewritten as this:

Duration daily = Duration.of(1l, ChronoUnit.DAYS);

Duration hourly = Duration.of(1, ChronoUnit.HOURS);

Duration everyMinute = Duration.of(1, ChronoUnit.MINUTES);
Duration everyTenSeconds = Duration.of(10, ChronoUnit.SECONDS);
Duration everyMilli = Duration.of(l, ChronoUnit.MILLIS);
Duration everyNano = Duration.of(1, ChronoUnit.NANOS);

ChronoUnit also includes some convenient units such as ChronoUnit.HALF_DAYS to repre-
sent 12 hours.

ChronoUnit for Differences

ChronoUnit is a great way to determine how far apart two Temporal values are. Temporal
includes LocalDate, LocalTime, and so on.

LocalTime one = LocalTime.of(5, 15);
LocalTime two = LocalTime.of(6, 30);
LocalDate date = LocalDate.of (2016, 1, 20);

System.out.println(ChronoUnit.HOURS.between(one, two)); // 1
System.out.println(ChronoUnit.MINUTES.between(one, two)); // 75
System.out.println(ChronoUnit.MINUTES.between(one, date)); // DateTimeException

Working with Dates and Times 249

The first print statement shows that between truncates rather than rounds. The second shows
how easy it is to count in different units. Just change the ChronoUnit type. The last reminds
us that Java will throw an exception if we mix up what can be done on date vs. time objects.

Using a Duration works the same way as using a Period, for example:

LocalDate date = LocalDate.of(2015, 1, 20);
LocalTime time = LocalTime.of(6, 15);
LocalDateTime dateTime = LocalDateTime.of(date, time);

10: Duration duration = Duration.ofHours(6);

11: System.out.println(dateTime.plus(duration)); // 2015-01-20T12:15

12: System.out.println(time.plus(duration)); // 12:15

13: System.out.println(date.plus(duration)); // UnsupportedTemporalException

Line 11 shows that we can add hours to a LocalDateT1ime, since it contains a time. Line
12 also works, since all we have is a time. Line 13 fails because we cannot add hours to an
object that does not contain a time.

Let’s try that again, but add 23 hours this time.

LocalDate date = LocalDate.of (2015, 1, 20);
LocalTime time = LocalTime.of(6, 15);
LocalDateTime dateTime = LocalDateTime.of(date, time);

10: Duration duration = Duration.ofHours(23);

11: System.out.println(dateTime.plus(duration)); // 2015-01-21T05:15

12: System.out.println(time.plus(duration)); // 05:15

13: System.out.println(date.plus(duration)); // UnsupportedTemporalException

This time we see that Java moves forward past the end of the day. Line 11 goes to
the next day since we pass midnight. Line 12 doesn’t have a day, so the time just wraps
around—just like on a real clock.

Remember that Period and Duration are not equivalent. This example shows a Period
and Duration of the same length:

LocalDate date = LocalDate.of(2015, 5, 25);
Period period = Period.ofDays(1);
Duration days = Duration.ofDays(1);

System.out.println(date.plus(period)); // 2015-05-26
System.out.println(date.plus(days)); // Unsupported unit: Seconds

Since we are working with a LocalDate, we are required to use Period. Duration has time
units in it, even if we don’t see them and they are meant only for objects with time. Make
sure that you can fill in Table 5.4 to identify which objects can use Period and Duration.

250 Chapter 5 = Dates, Strings, and Localization

TABLE 5.4 WheretouseDuration and Period

Can Use with Period? Can Use with Duration?
LocalDate Yes No
LocalDateTime Yes Yes
LocalTime No Yes
ZonedDateTime Yes Yes

Working with Instants

The Instant class represents a specific moment in time in the GMT time zone. Suppose
that you want to run a timer:

Instant now = Instant.now();
// do something time consuming
Instant later = Instant.now();

Duration duration = Duration.between(now, later);
System.out.println(duration.toMillis());

In our case, the “something time consuming” was just over a second, and the program
printed out 1025.
If you have a ZonedDateT1ime, you can turn it into an Instant:

LocalDate date = LocalDate.of (2015, 5, 25);

LocalTime time = LocalTime.of(1l, 55, 00);

ZoneIld zone = Zoneld.of("US/Eastern");

ZonedDateTime zonedDateTime = ZonedDateTime.of(date, time, zone);
Instant instant = zonedDateTime.toInstant(); // 2015-05-25T15:55:00Z
System.out.println(zonedDateTime); // 2015-05-25T11:55-04:00[US/Eastern]
System.out.println(instant); // 2015-05-25T15:55:00Z

The last two lines represent the same moment in time. The ZonedDateT1ime includes a time
zone. The Instant gets rid of the time zone and turns it into an Instant of time in GMT.

You cannot convert a LocalDateTime to an Instant. Remember that an Instant is a
point in time. A LocalDateTime does not contain a time zone, and it is therefore not univer-
sally recognized around the world as the same moment in time.

If you have the number of seconds since 1970, you can also create an Instant that way:

Instant instant = Instant.ofEpochSecond(epochSeconds);
System.out.println(instant); // 2015-05-25T15:55:00Z

Working with Dates and Times 251

Using that Instant, you can do math. Instant allows you to add any unit day or smaller,
for example:

Instant nextDay = instant.plus(l, ChronoUnit.DAYS);
System.out.println(nextDay); // 2015-05-26T15:55:00Z

Instant nextHour = instant.plus(l, ChronoUnit.HOURS);
System.out.println(nextHour); // 2015-05-25T16:55:00Z

Instant nextWeek = instant.plus(l, ChronoUnit.WEEKS); // exception

It’s weird that an Instant displays a year and month while preventing you from doing
math with those fields. Unfortunately, you need to memorize this fact.

Accounting for Daylight Savings Time

Some countries observe daylight savings time. This is where the clocks are adjusted by an
hour twice a year to make better use of the sunlight. Not all countries participate, and
those that do use different weekends for the change.

In the United States, we move the clocks an hour ahead in March and move them an
hour back in November. The exam will let you know if a date/time mentioned falls on a
weekend when the clocks are scheduled to be changed. If it is not mentioned in a question,
you can assume that is a normal weekend. We officially change our clocks at 2 a.m., which
falls very early Sunday morning.

Figure 5.2 shows what happens with the clocks. On a normal day, time proceeds linearly
from 1:00 a.m. to 2:00 a.m. to 3:00 a.m. to 4:00 a.m. and so on. When we change our
clocks in March, time springs forward from 1:59 a.m. to 3:00 a.m. Technically it is 1:59
a.m. and 59 seconds plus milliseconds; in other words, the moment immediately before 2:00
a.m. Luckily, the exam doesn’t get that granular, and we can think of it as simply 1:59 a.m.

FIGURE 5.2 How daylight savings time works

Normal day 1:00 am-1:59 am 2:00 am-3:00 am 3:00 am-4:00 am
N N
March } . . e
changeover 1:00 am-1:59 am 3:00 am-4:00 am
J J
N N
November 1:00 am-1:59 am 1:00 am-1:59 am . "
changeover (first time) (again) 2:00 am-4:00 am
J J

252 Chapter 5 = Dates, Strings, and Localization

When we change our clocks in November, time falls back and we experience the hour
from 2:00 a.m. to 2:59 a.m. Children learn this as spring forward in the spring and fall
back in the fall.

Another way to look at it is that there is one day in March that is 23 hours long and one
day in November that is 25 hours long. In programming, we call this an edge case. Oracle
has decided that it is important enough to be on the exam. This means that you have to
learn about it, even if you live in a country that doesn’t participate in daylight savings time.

For example, on March 13, 2016, we move our clocks forward an hour and jump from
2:00 a.m. to 3:00 a.m. This means that there is no 2:30 a.m. that day. If we wanted to
know the time an hour later than 1:30, it would be 3:30.

LocalDate date = LocalDate.of(2016, Month.MARCH, 13);
LocalTime time = LocalTime.of(1l, 30);

Zoneld zone = Zoneld.of("US/Eastern");

ZonedDateTime dateTime = ZonedDateTime.of(date, time, zone);

System.out.println(dateTime); // 2016-03-13T01:30-05:00[US/Eastern]
dateTime = dateTime.plusHours(1l);
System.out.println(dateTime); // 2016-03-13T03:30-04:00[US/Eastern]

Notice that two things change in this example. The time jumps from 1:30 to 3:30. The
UTC offset also changes. Remember when we calculated GMT time by subtracting the time
zone from the time? You can see that we went from 6:30 GMT (1:30 minus -5:00) to 7:30
GMT (3:30 minus -4:00). This shows that the time really did change by one hour from
GMT’s point of view.

Similarly in November, an hour after the initial 1:30 is also 1:30 because at 2:00 a.m.
we repeat the hour. This time, try to calculate the GMT time yourself for all three times to
confirm that we really do move back only one hour at a time.

LocalDate date = LocalDate.of (2016, Month.NOVEMBER, 6);
LocalTime time = LocalTime.of(1l, 30);

Zoneld zone = Zoneld.of("US/Eastern");

ZonedDateTime dateTime = ZonedDateTime.of(date, time, zone);

System.out.println(dateTime); // 2016-11-06T01:30-04:00[US/Eastern]
dateTime = dateTime.plusHours(1l);
System.out.println(dateTime); // 2016-11-06T01:30-05:00[US/Eastern]
dateTime = dateTime.plusHours(1l);
System.out.println(dateTime); // 2016-11-06T02:30-05:00[US/Eastern]

Did you get it? We went from 5:30 GMT to 6:30 GMT to 7:30 GMT.
Finally, trying to create a time that doesn’t exist just rolls forward:

Reviewing the String class 253

LocalDate date = LocalDate.of (2016, Month.MARCH, 13);

LocalTime time = LocalTime.of(2, 30);

Zoneld zone = Zoneld.of("US/Eastern");

ZonedDateTime dateTime = ZonedDateTime.of(date, time, zone);
System.out.println(dateTime); // 2016-03-13T03:30-04:00[US/Eastern]

Java is smart enough to know that there is no 2:30 a.m. that night and switches over to
the appropriate GMT offset.

Yes, it is annoying that Oracle expects you to know this even if you aren’t in the United
States—or for that matter in a part of the United States that doesn’t follow daylight savings
time. The exam creators are in the United States, and they decided that everyone needs to
know how United States time zones work.

Reviewing the String class

You might notice that the String class is not listed in the objectives for the OCP. However,
it is used in most of the questions for output. We don’t want you to get a question on
another topic wrong because you forgot how concatenation works! As you know, a string is
a sequence of characters.

Since there are so many String objects in a program, the String class is final and
String objects are immutable. The value cannot change on an immutable object, as dis-
cussed in Chapter 2. This allows Java to optimize by storing string literals in the string
pool. This also means that you can compare string literals with ==. However, it is still a
good idea to compare with equals(), because String objects created via a constructor or a
method call will not always match when using comparison with ==. Here’s an example:

4: String s1 = "bunny";

5: String s2 = "bunny";

6: String s3 = new String("bunny");

7: System.out.println(sl == s2); // true
8: System.out.println(sl == s3); // false
9:

System.out.println(sl.equals(s3)); /] true

Line 7 prints true because the s1 and s2 references point to the same literal in the string
pool. Line 8 prints false because line 6 intentionally creates a new object in memory by
calling the constructor. Line 9 returns true because the values are the same, even though
the location in memory is not.

Since String is such a fundamental class, Java allows using the + operator to combine
them, which is called concatenation. Concatenation is a big word, but it just means creat-
ing a new String with the values from both original strings. Remember that Java processes
these operators from left to right. Also remember that a String concatenated with anything
else is a String. Do you see what makes these two examples different?

254 Chapter 5 = Dates, Strings, and Localization

10: String s4 = "1" + 2 + 3;
11: String s5 =1 + 2 + "3";
12: System.out.println(s4); // 123
13: System.out.println(s5); // 33

Line 12 prints out 123 because it sees a String first and then keeps concatenating, mak-
ing new strings. Line 13 sees two numbers to add first, and it does that using integer arith-
metic. It isn’t until the end of the line that it sees a String and can concatenate.

Finally, here is an example that uses common String methods:

14: String s = "abcde ";

15: System.out.printin(s.trim().length()); /] 5

16: System.out.println(s.charAt(4)); /] e

17: System.out.println(s.index0f('e')); /] 4

18: System.out.println(s.index0f("de")); // 3

19: System.out.println(s.substring(2, 4).toUpperCase()); // CD
20: System.out.println(s.replace('a', '1')); // 1lbcde
21: System.out.println(s.contains("DE")); // false
22: System.out.println(s.startsWith("a")); // true

Line 15 shows that trim() removes any whitespace characters from the beginning and
end of a String. Line 16 reminds us that Java starts counting indexes with O instead of 1.
Lines 17 and 18 show that we can find the zero-based index of a character or a String.
Line 19 creates a smaller String from index 2 to right before index 4. It then uses method
chaining to convert that String to capital letters. Line 20 does a character replacement.
Lines 21 and 22 do a simple String search.

Since String is immutable, it is inefficient for when you are updating the value in a
loop. StringBuilder is better for that scenario. A StringBuilder is mutable, which means
that it can change value and increase in capacity. If multiple threads are updating the same
object, you should use StringBuffer rather than StringBuilder.

As a review of StringBuilder code, see if you remember why each of these lines outputs
what it does:

3 StringBuilder b = new StringBuilder();

4 b.append(12345) .append('-");

5: System.out.println(b.length()); /] 6

6: System.out.println(b.index0f("-")); /] 5

7 System.out.println(b.charAt(2)); // 3

8

9: StringBuilder b2 = b.reverse();

10: System.out.println(b.toString()); // -54321
11: System.out.println(b == b2); /] true

Line 3 creates an empty StringBuilder. Line 4 uses method chaining to make multiple
method calls and appends two different types to the StringBuilder. On line 5, there are

Adding Internationalization and Localization 255

six characters in b. Five are the numbers from the int and the sixth is the dash. On line 6,
the last index is 5 because Java starts counting indexes with 0. Similarly, on line 7, the sec-
ond index is the third character, which is 3. On line 9, we reverse the StringBuilder and
return a reference to the same object. Line 10 prints this reversed value, and line 11 con-
firms that it is the same object.

And now for some more:

12: StringBuilder s = new StringBuilder("abcde");
13: s.insert(1l, '-').delete(3, 4);

14: System.out.println(s); //a-bde
15: System.out.println(s.substring(2, 4)); // bd

Line 13 uses chaining. We insert at the index that is right before the second character, b,
making the string a-bc. Then we delete from the third index until right before the fourth
index, which happens to be only one character, c. On line 15, we get the characters starting
with index 2 and ending right before index 4. This is the two characters, bd.

Table 5.5 reviews the differences between String, StringBuilder, and StringBuffer. If
this is still fuzzy, please get out your study materials from the OCA before proceeding.

TABLE 5.5 Comparing String, StringBuilder, and StringBuffer

Characteristic String StringBuilder StringBuffer
Immutable? Yes No No
Pooled? Yes No No
Thread-safe? Yes No Yes
Can change size? No Yes Yes

Adding Internationalization
and Localization

Many applications need to work for different countries and with different languages. For
example, consider the sentence “The zoo is holding a special event on 4/1/15 to look at ani-
mal behaviors.” When is the event? In the United States, it is on April 1. However a British
reader would interpret this as January 4. A British reader might also wonder why we didn’t
write “behaviours.” If we are making a website or program that will run in multiple coun-
tries, we want to use the correct language and formatting.

256 Chapter 5 = Dates, Strings, and Localization

Internationalization is the process of designing your program so it can be adapted. This
involves placing strings in a property file and using classes like DateFormat so that the right
format is used based on user preferences. You do not actually need to support more than
one language or country to internationalize the program. Internationalization just means
that you can.

Localization means actually supporting multiple locales. Oracle defines a locale as “a
specific geographical, political, or cultural region.” You can think of a locale as being like
a language and country pairing. Localization includes translating strings to different lan-
guages. It also includes outputting dates and numbers in the correct format for that locale.
You can go through the localization process many times in the same application as you add
more languages and countries.

Since internationalization and localization are such long words, they are often abbrevi-
ated as i187n and [10n. The number refers to the number of characters between the first and
last characters, in other words, the number of characters that are replaced with a number.

In this section, we will look at how to define a locale, work with resources bundles, and
format dates and numbers.

Picking a Locale

While Oracle defines a locale as “a specific geographical, political, or cultural region,”
you’ll only see languages and countries on the exam. Oracle certainly isn’t going to delve
into political regions that are not countries. That’s too controversial for an exam!

The Locale class is in the java.util package. The first useful Locale to find is the user’s
current locale. Try running the following code on your computer:

Locale locale = Locale.getDefault();
System.out.println(locale);

When we run it, it prints en_US. It might be different for you. This default output tells us
that our computers are using English and are sitting in the United States.

Notice the format. First comes the lowercase language code. Then comes an underscore
followed by the uppercase country code. The underscore and country code are optional. It
is valid for a Locale to be only a language. Figure 5.3 shows the two formats for Locale
objects that you are expected to remember.

FIGURE 5.3 Locale string formats

fr en_US
Language Language
only

Country

Adding Internationalization and Localization 257

As practice, make sure that you understand why each of these Locales is invalid:

us // can have a language without a country, but not the reverse
enUS // missing underscore

US_en // the country and language are reversed

EN // language must be lowercase

The corrected versions are en and en_US.

)/ You do not need to memorize language or country codes. The exam will let
,@TE you know about any that are being used. You do need to recognize valid and
invalid formats. Pay attention to uppercase/lowercase and the underscore.

You can also use a Locale other than the default. There are three main ways of creating
a Locale. First, the Locale class provides constants for some of the most commonly used
locales:

System.out.println(Locale.GERMAN); // de
System.out.println(Locale.GERMANY); // de_DE

Notice that the first one is the German language and the second is Germany the country—
similar, but not the same. The other two main ways of creating a Locale are to use the
constructors. You can pass just a language or both a language and country:

System.out.println(new Locale("fr")); /] fr
System.out.println(new Locale("hi", "IN")); // hi_IN

The first is the language French and the second is Hindi in India. Again, you don’t need
to memorize the codes. There is another constructor that lets you be even more specific
about the locale. That variant is not on the exam.

Java will let you create a Locale with an invalid language or country. However, it will
not match the Locale that you want to use and your program will not behave as expected.

There’s another way to create a Locale that is more flexible. The builder design pattern lets
you set all of the properties that you care about and then build it at the end. This means that
you can specify the properties in any order. The following two Locales both represent en_US.

Locale 11 = new Locale.Builder()
.setlLanguage("en")
.setRegion("US")

Lbuild();

Locale 12 = new Locale.Builder()
.setRegion("US")
.setlLanguage("en")
Lbuild();

258 Chapter 5 = Dates, Strings, and Localization

As you saw in Chapter 2, the advantage of the builder pattern is that you can easily use
different combinations of setter methods. Locale.Builder supports a number of other set-
ter methods that you don’t need to know for the exam.

How Not to Use Locale.Builder

The locale builder converts to uppercase or lowercase for you as needed, which means
this is legal:

Locale 12 = new Locale.Builder() // bad but legal
.setRegion("us")
.setLanguage ("EN")
Lbuild();

Please don’t write code that looks like this example. Your teammates will expect US to be
in uppercase and en to be in lowercase. Switching it is just confusing.

Locale.Builder also lets you do other bad things like create a blank Locale. Please don't.

When testing a program, you might need to use a Locale other than the default for your
computer. You can set a new default right in Java:

System.out.println(Locale.getDefault()); // en_US

Locale locale = new Locale("fr");

Locale.setDefault(locale); // change the default
System.out.println(Locale.getDefault()); // fr

Try it, and don’t worry—the Locale changes only for that one Java program. It does not
change any settings on your computer. It does not even change future programs. If you run
the previous code multiple times, the output will stay the same.

The exam uses setDefault a lot because it can’t make assumptions about
OTE where you are located. In practice, setDefault is used extremely rarely.

Using a Resource Bundle

A resource bundle contains the local specific objects to be used by a program. It is like a
map with keys and values. The resource bundle can be in a property file or in a Java class.
A property file is a file in a specific format with key/value pairs.

Up until now, we’ve kept all of the strings from our program in the classes that use
them. Localization requires externalizing them to elsewhere. This is typically a property
file, but it could be a resource bundle class.

Adding Internationalization and Localization 259

Our zoo program has been very successful. We are now getting requests to use it at three
more zoos! We already have support for United States—based zoos. We now need to add
Zoo de La Palmyre in France, the Greater Vancouver Zoo in English-speaking Canada, and
Zoo de Granby in French-speaking Canada.

We immediately realized that we are going to need to internationalize our program.
Resource bundles will be quite helpful. They will let us easily translate our application to
multiple locales or even support multiple locales at once. It will also be easy to add more
locales later if we get zoos in even more countries interested. We thought about which
locales we need to support, and we came up with four:

Locale us = new Locale("en", "US");

Locale france = new Locale("fr", "FR");
Locale englishCanada = new Locale("en", "CA");
Locale frenchCanada = new Locale("fr", "CA");

In the next sections, we will create a resource bundle using a property file and a Java
class. We will also look at how Java determines which resource bundle to use.

Creating a Property File Resource Bundle

Luckily, Java doesn’t require us to create four different resource bundles. If we don’t have
a country-specific resource bundle, Java will use a language-specific one. It’s a bit more
involved than this, which we cover later in the chapter.

For now, we need English and French property file resource bundles. First, create two
property files:

Zoo_en.properties
hello=Hello
open=The zoo is open.

Zoo_fr.properties
hello=Bonjour
open=Le zoo est ouvert

Notice that the filenames are the name of our resource bundle followed by an under-
score followed by the target locale. We can write our very first program that uses a resource
bundle to print this information:

import java.util.*;
public class ZooOpen {

public static void main(String[] args) {
Locale us = new Locale("en", "US");
Locale france = new Locale("fr", "FR");

~N o b~ W N

260 Chapter 5 = Dates, Strings, and Localization

printProperties(us);
System.out.println();
10: printProperties(france);
11: }
12:
13: public static void printProperties(Locale locale) {
14: ResourceBundle rb = ResourceBundle.getBundle("Zoo", locale);
15: System.out.println(rb.getString("hello"));
16: System.out.println(rb.getString("open"));
17: }
18: }

Lines 5 and 6 create the locales that we want to test. The method on lines 13-17
does the actual work. Line 14 calls a factory method on ResourceBundle to get the right
resource bundle. Lines 15 and 16 retrieve the right resource bundle and print the results.
The output is as follows:

Hello
The zoo 1is open.

Bonjour
Le zoo est ouvert

Notice how much is happening behind the scenes here. Java uses the name of the bundle
(Zoo) and looks for the relevant property file. You will see this again later in the chapter and
learn how Java figures out which one to use.

Property File Format
The most common syntax is where a property file contains key/value pairs in the format:
animal=dolphin

There’s more to it than that. There are actually two other formats that you can use to express
these pairs. Even if you never use them in your job, you need to know them for the exam:

animal:dolphin
animal dolphin

You might wonder how to express some other ideas in a property file. The common ones
are these:

= [faline begins with # or !, itis a comment.

= Spaces before or after the separator character are ignored.

Adding Internationalization and Localization 261

= Spaces at the beginning of a line are ignored.

= Spaces at the end of a line are not ignored.

= End a line with a backslash if you want to break the line for readability.
= You can use normal Java escape characters like \t and \n.

Putting these together, we can write the following:

one comment
! another comment

key = value\tafter tab
long = abcdefghijklm\
nopqrstuvwxyz

Printing out these two properties in a program gives us this:

value —~ after tab
abcdefghijklmnopgrstuvwxyz

Since a resource bundle contains key/value pairs, you can even loop through them to list
all of the pairs. The ResourceBundle class provides a method to get a set of all keys:

Locale us = new Locale("en", "US");
ResourceBundle rb = ResourceBundle.getBundle("Zoo", us);

Set<String> keys = rb.keySet();
keys.stream().map(k -> k + " " + rb.getString(k))
.forEach(System.out::println);

This example goes through all of the keys. It maps each key to a String with both the
key and value before printing everything. This prints

name Vancouver Zoo
hello Hello
open The zoo is open

And yes, we could have used a traditional for loop. You need to know both loops and
functional programming for the exam, so we use both approaches throughout the book.

In addition to ResourceBundle, Java supports a class named Properties. It is like a Map
that you learned about in Chapter 3, “Generics and Collections.” It was written before Map
existed, so it doesn’t use all of the same method names.

Properties has some additional features, including being able to pass a default.
Converting from ResourceBundle to Properties is easy:

262 Chapter 5 = Dates, Strings, and Localization

Properties props = new Properties();
rb.keySet().stream()
.forEach(k -> props.put(k, rb.getString(k)));

Here we went through each key and used a Consumer to add it to the Properties object.
Now that we have Properties available, we can get a default value:

System.out.println(props.getProperty("notReallyAProperty"));
System.out.println(props.getProperty("notReallyAProperty", "123"));

The first line prints null, since that property doesn’t exist. The second prints 123, since
the property wasn’t found. If a key were passed that actually existed, both would have
returned it.

Note that the method called is getProperty (). There is also a get() method as we’d
expect with any collection. Only getProperty() allows for a default value.

Table 5.6 shows the different scenarios with getProperty(). As you can see, null is
returned when we don’t pass a default value and the key is not found. When we pass the
default value, it is used instead.

TABLE 5.6 Return values for getProperty()

Key Found? Yes No
getProperty ("key") Value null
getProperty("key", "default") Value "default"

Creating a Java Class Resource Bundle

Most of the time, a property file resource bundle is enough to meet the program’s needs. It
does have a limitation in that only String values are allowed. Java class resource bundles
allow any Java type as the value. Keys are strings regardless.

To implement a resource bundle in Java, you create a class with the same name that you
would use for a property file. Only the extension is different. Since we have a Java object,
the file must be a .java file rather than a .properties file. For example, the following class
is equivalent to the property file that you saw in the last section:

import java.util.*;
public class Zoo_en extends ListResourceBundle {
protected Object[][] getContents() {
return new Object[][] {
{ "hello", "Hello" },
{ "open", "The zoo is open" } };

~N o b~ W N

1}

Adding Internationalization and Localization 263

Line 2 shows the superclass for Java class resource bundles. The ListResourceBundle
abstract class leaves one method for subclasses to implement. The rest of the code creates a
2D array with the keys hello and open.

There are two main advantages of using a Java class instead of a property file for a
resource bundle:

* You can use a value type that is not a String.
= You can create the values of the properties at runtime.

In our zoos, we realize that we need to collect taxes differently in each country. We
decide to set up just the code for the United States first. This will give us the structure.
Then we can give the work for the rest to another programmer. Pretend that we created
UsTaxCode class. Then we can use a Java class resource bundle to retrieve it:

package resourcebundles;
import java.util.*;
public class Tax_en_US extends ListResourceBundle {
protected Object[][] getContents() {
return new Object[][] { { "tax", new UsTaxCode() } };
}
public static void main(String[] args) {
ResourceBundle rb = ResourceBundle.getBundle(
"resourcebundles.Tax", Locale.US);
System.out.println(rb.getObject("tax"));
1}

Line 3 extends the ListResourceBundle so that we can define a resource bundle. This
time, the class name specifies both the language code and country code. Lines 4-6 show
the method to declare the key/value pairs. This time, the value is not a String. Lines 8-9
show that a resource bundle can be in a package. We just specify the name of the package
before the name of the class. Line 10 shows how to retrieve a non-String resource bundle.

O 0 N O U b W N =

[
= ©

Determining Which Resource Bundle to Use

On the exam, there are two methods for getting a resource bundle:

ResourceBundle.getBundle("name");
ResourceBundle.getBundle("name", locale);

The first one uses the default locale. You are likely to use this one in programs that you
write. The exam either tells you what to assume as the default locale or uses the second
approach.

Java handles the logic of picking the best available resource bundle for a given key. It
tries to find the most specific value. When there is a tie, Java class resource bundles are
given preference. Table 5.7 shows what Java goes through when asked for resource bundle
Zoo with the locale new Locale("fr", "FR") when the default locale is US English.

264

Chapter 5 = Dates, Strings, and Localization

TABLE 5.7 Picking aresource bundle for French in France with default locale US English

Step Looks for File Reason

1 Zoo_fr_FR.java The requested locale

2 Zoo_fr_FR.properties The requested locale

3 Zoo_fr.java The language we
requested with no country

4 Zoo_fr.properties The language we
requested with no country

5 Zoo_en_US.java The default locale

6 Zoo_en_US.properties The default locale

7 Zoo_en.java The default language with
no country

8 Zoo_en.properties The default language with
no country

9 Zoo.java No locale at all—the
default bundle

10 Zoo.properties No locale at all—the
default bundle

1" If still not found, throw

MissingResourceException.

You do need to be able to create the 11-step list in Table 5.7. As another way of remem-
bering it, learn these steps:

= Always look for the property file after the matching Java class.

= Drop one thing at a time if there are no matches. First drop the country and then the
language.
= Look at the default locale and the default resource bundle last.
How many files do you think Java would need to look for to find the resource bundle
with the code?

Locale.setDefault(new Locale("hi"));

ResourceBundle rb = ResourceBundle.getBundle("Zoo", new Locale("en"));

Adding Internationalization and Localization 265

The answer is six. They are listed here:
Zoo_hi.java
Zoo_hi.properties
Zoo_en.java
Zoo_en.properties

Zoo.java

© g s w D=

Zoo.properties

This time, we didn’t specify any country codes so Java got to skip looking for those. If
we ask for the default locale, Java will start searching the bundles starting with step 6 in
Table 5.7 and going to the end (or until it finds a match.)

Got all that? Good—Dbecause there is a twist. The steps that we’ve discussed so far are
for finding the matching resource bundle to use as a base. Java isn’t required to get all of
the keys from the same resource bundle. It can get them from any parent of the matching
resource bundle. A parent resource bundle in the hierarchy just removes components of the
name until it gets to the top. Table 5.8 shows how to do this.

TABLE 5.8 Listing the parent resource bundles

Matching Resource Bundle Files Keys Can Come From
Zoo_fr_FR.java Zoo_fr_FR.java
Zoo_fr.java
Zoo.java
Zoo_fr.properties Zoo_fr.properties

Zoo.properties

Let’s put all of this together and print some information about our zoos. We have a num-
ber of property files this time:

Zoo.properties
name=Vancouver Zoo

Zoo_en.properties
hello=Hello

open=is open
Zoo_en_CA.properties

visitor=Canada visitor

Zoo_fr.properties
hello=Bonjour
open=est ouvert

266 Chapter 5 = Dates, Strings, and Localization

Zoo_fr_CA.properties
visitor=Canada visiteur

Suppose that we have a visitor from Quebec (a default locale of French Canada) who has
asked the program to provide information in English. What do you think this outputs?

2: Locale locale = new Locale("en", "CA");

3: ResourceBundle rb = ResourceBundle.getBundle("Zoo", locale);
4: System.out.print(rb.getString("hello"));

5: System.out.print(". ");

6: System.out.print(rb.getString("name"));

7: System.out.print(" ");

8: System.out.print(rb.getString("open"));

9: System.out.print(" ");

10: System.out.print(rb.getString("visitor"));

The answer is Hello. Vancouver Zoo is open Canada visitor. First Java goes
through the available resource bundles to find a match. It finds one right away with
Zoo_en_CA.properties. This means the default locale is irrelevant.

Line 4 doesn’t find a match for the key hello in Zoo_en_CA.properties, so it goes up
the hierarchy to Zoo_en.properties. Line 6 has to go all the way to the top of the hier-
archy to Zoo.properties to find the key name. Line 8 has the same experience as line 4.
Finally, line 10 has an easier job of it and finds a matching key in Zoo_en_CA.properties.

@ Real World Scenario

Handling Variables Inside Resource Bundles

In real programs, it is common to substitute variables in the middle of a resource bundle
string. The convention is to use a number inside brackets such as {0}. Although Java
resource bundles don’t support this directly, the MessageFormat class does.

For example, suppose that we had this property defined:
helloByName=Hello, {0}

In Java, we can read in the value normally. After that, we can run it through the
MessageFormat class to substitute the parameters. As you might guess, the second
parameter to format() is a varargs one. This means that you can pass many parameters.

String format = rb.getString("helloByName");
String formatted = MessageFormat.format(format, "Tammy");
System.out.print(formatted);

Adding Internationalization and Localization 267

Formatting Numbers

Resource bundles are great for content that doesn’t change. Text like a welcome greeting is
pretty stable. When talking about dates and prices, the formatting varies and not just the
text. Luckily, the java.text package has classes to save the day. The following sections
cover how to format numbers, currency, and dates.

Format and Parse Numbers and Currency

Regardless of whether you want to format or parse, the first step is the same. You need to
create a NumberFormat. The class provides factory methods to get the desired formatter.
Table 5.9 shows the available methods.

TABLE 5.9 Factory methods to get a NumberFormat

Description Using Default Locale and a Specified Locale

A general purpose formatter NumberFormat.getInstance()
NumberFormat.getInstance(locale)

Same as getInstance NumberFormat.getNumberInstance()
NumberFormat.getNumberInstance(locale)

For formatting monetary NumberFormat.getCurrencyInstance()
amounts NumberFormat.getCurrencyInstance(locale)
For formatting percentages NumberFormat.getPercentInstance()

NumberFormat.getPercentInstance(locale)

Rounds decimal values before NumberFormat.getIntegerInstance()
displaying (not on the exam) NumberFormat.getIntegerInstance(locale)

Once you have the NumberFormat instance, you can call format() to turn a number into
a String and parse() to turn a String into a number.

y The format classes are not thread-safe. Do not store them in instance vari-
A&TE ables or static variables.
Formatting

The format method formats the given number based on the locale associated with the
NumberFormat object. For marketing literature, we want to share the monthly number of

268 Chapter 5 = Dates, Strings, and Localization

visitors to the San Diego Zoo. The following shows printing out the same number in three
different locales:

import java.text.*;
import java.util.*;

public class FormatNumbers {
public static void main(String[] args) {
int attendeesPerYear = 3_200_000;
int attendeesPerMonth = attendeesPerYear / 12;
NumberFormat us = NumberFormat.getInstance(Locale.US);
System.out.println(us.format(attendeesPerMonth));
NumberFormat g = NumberFormat.getInstance(Locale.GERMANY);
System.out.println(g.format(attendeesPerMonth));
NumberFormat ca = NumberFormat.getInstance(Locale.CANADA_FRENCH);
System.out.println(ca.format(attendeesPerMonth));

O o N o U b~ W N

e
W N R o

14: T}
The output looks like this:

266,666
266.666
266 666

Now our U.S., German, and French Canadian guests can all see the same information in the
number format they are accustomed to using. In the United States, we use commas to separate
parts of large numbers. Germans use a dot for this function. French Canadians use neither.

Formatting currency works the same way:

double price = 48;
NumberFormat us = NumberFormat.getCurrencyInstance();

System.out.println(us.format(price));

When run with the default locale of en_US, the output is $48.00. Java automatically for-
mats with two decimals and adds the dollar sign. This is convenient even if you don’t need
to localize your program!

In the real world, use int or BigDecimal for money and not double. Doing
TE math on amounts with double is dangerous, and your boss won’t appreci-

ate it if you lose pennies during transactions.

Parsing

The NumberFormat class defines a parse method for parsing a String into a number using
a specific locale. The result of parsing depends on the locale. For example, if the locale is

Adding Internationalization and Localization 269

the United States and the number contains commas, the commas are treated as formatting
symbols. If the locale is a country or language that uses commas as a decimal separator,
the comma is treated as a decimal point. In other words, the value of the resulting number
depends on the locale.

The parse methods for the different types of formats throw the checked exception
ParseException if they fail to parse. Often, you will see the code as a snippet and not in
a method as in the next example. You can assume that exceptions are properly handled.
If you see parsing logic inside a method, make sure that ParseException or Exception is
handled or declared.

Let’s look at an example. The following code parses a discounted ticket price with dif-
ferent locales:

NumberFormat en = NumberFormat.getInstance(Locale.US);
NumberFormat fr = NumberFormat.getInstance(Locale.FRANCE);

String s = "40.45";
System.out.println(en.parse(s)); // 40.45
System.out.println(fr.parse(s)); // 40

In the United States, a dot is part of a number and the number is parsed how you might
expect. France does not use a decimal point to separate numbers. Java parses it as a format-
ting character, and it stops looking at the rest of the number. The lesson is to make sure
that you parse using the right locale!

What Does Java Do with Extra Characters When Parsing?

The parse method parses only the beginning of a string. After it reaches a character that
cannot be parsed, the parsing stops and the value is returned. Do you see why each of
these behaves as it does?

NumberFormat nf = NumberFormat.getInstance();

String one = "456abc";

String two = "-2.5165x10";

String three = "x85.3";

System.out.println(nf.parse(one)); // 456
System.out.println(nf.parse(two)); // -2.5165
System.out.println(nf.parse(three));// throws ParseException

The first two lines parse correctly. There happen to be extra characters after the number,
but that’s OK. The third parsing fails because there are no numbers at the beginning of
the String. Java instead throws a java.text.ParseException.

270 Chapter 5 = Dates, Strings, and Localization

The parse method is also used for parsing currency. For example, we can read in the
z00’s monthly income from ticket sales:

String amt = "$92,807.99";

NumberFormat cf = NumberFormat.getCurrencyInstance();
double value = (Double) cf.parse(amt);
System.out.println(value); // 92807.99

The currency string "$92,807.99" contains a dollar sign and a comma. The parse
method strips out the characters and converts the value to a number. The return value of
parse is a Number object. Number is the parent class of all the java.lang wrapper classes, so
the return value can be cast to its appropriate data type. The Number is cast to a Double and
then automatically unboxed into a double.

The NumberFormat classes have other features and capabilities, but the topics covered in
this section address the content that you need to know for the OCP exam.

Formatting Dates and Times
The date and time classes support many methods to get data out of them:

LocalDate date = LocalDate.of (2020, Month.JANUARY, 20);

System.out.println(date.getDayOfWeek()); // MONDAY
System.out.println(date.getMonth()); // JANUARY
System.out.println(date.getYear()); // 2020
System.out.println(date.getDayOfYear()); /] 20

We could use this information to display information about the date. However, it would
be more work than necessary. Java provides a class called DateTimeFormatter to help us
out. Unlike the LocalDateTime class, DateTimeFormatter can be used to format any type of
date and/or time object. What changes is the format. DateTimeFormatter is in the package
java.time.format.

LocalDate date = LocalDate.of (2020, Month.JANUARY, 20);

LocalTime time = LocalTime.of(1l, 12, 34);

LocalDateTime dateTime = LocalDateTime.of(date, time);
System.out.println(date.format(DateTimeFormatter.ISO_LOCAL_DATE));
System.out.println(time.format(DateTimeFormatter.ISO_LOCAL_TIME));
System.out.println(dateTime.format(DateTimeFormatter.ISO_LOCAL_DATE_TIME));

ISO is a standard for dates. The output of the previous code looks like this:

2020-01-20
11:12:34
2020-01-20T11:12:34

Adding Internationalization and Localization 2n

This is a reasonable way for computers to communicate, but it is probably not how
you want to output the date and time in your program. Luckily, there are some predefined
formats that are more useful:

DateTimeFormatter shortDateTime =
DateTimeFormatter.ofLocalizedDate(FormatStyle.SHORT);
System.out.println(shortDateTime.format(dateTime)); /] 1/20/20
System.out.println(shortDateTime.format(date)); /] 1/20/20
System.out.println(
shortDateTime.format(time)); // UnsupportedTemporalTypeException

Here we say that we want a localized formatter in the predefined short format. The
last line throws an exception because a time cannot be formatted as a date. The format ()
method is declared on both the formatter objects and the date/time objects, allowing you to
reference the objects in either order. The following statements print exactly the same thing
as the previous code:

DateTimeFormatter shortDateTime =
DateTimeFormatter.oflLocalizedDate (FormatStyle.SHORT);
System.out.println(dateTime.format(shortDateTime));
System.out.println(date.format(shortDateTime));
System.out.println(time.format(shortDateTime));

In this book, we’ll change around the orders to get you used to seeing it both ways.
Table 5.10 shows the legal and illegal localized formatting methods.

TABLE 5.10 oflLocalized methods

DateTimeFormatter Calling f.format Calling f.format Calling
f = (localDate) (localDateTime) or f.format
DateTimeFormatter. (zonedDateTime) (localTime)

(FormatStyle.SHORT
)s

ofLocalizedDate Legal—shows whole Legal—shows just Throws runtime
object date part exception

OfLocalizedDateTime Throws runtime Legal—shows Throws runtime
exception whole object exception

ofLocalizedTime Throws runtime Legal—shows just Legal—shows

exception time part whole object

272 Chapter 5 = Dates, Strings, and Localization

There are two predefined formats that can show up on the exam: SHORT and MEDIUM. The
other predefined formats involve time zones, which are not on the exam.

LocalDate date = LocalDate.of (2020, Month.JANUARY, 20);

LocalTime time = LocalTime.of(1l, 12, 34);

LocalDateTime dateTime = LocalDateTime.of(date, time);

DateTimeFormatter shortF = DateTimeFormatter
.oflLocalizedDateTime(FormatStyle.SHORT);

DateTimeFormatter mediumF = DateTimeFormatter
.ofLocalizedDateTime(FormatStyle.MEDIUM);

System.out.println(shortF.format(dateTime)); /] 1/20/20 11:12 AM

System.out.println(mediumF.format(dateTime)); // Jan 20, 2020 11:12:34 AM

If you don’t want to use one of the predefined formats, you can create your own. For
example, this code spells out the month:

DateTimeFormatter f = DateTimeFormatter.ofPattern("MMMM dd, yyyy, hh:mm");
System.out.println(dateTime.format(f)); // January 20, 2020, 11:12

Before we look at the syntax, know that you are not expected to memorize what the dif-
ferent numbers of each symbol mean. The most you will need to do is to recognize the date
and time parts.

MMMM M represents the month. The more Ms you have, the more verbose the Java output. For
example, M outputs 1, MM outputs 01, MMM outputs Jan, and MMMM outputs January.

dd d represents the day in the month. As with month, the more ds you have, the more ver-
bose the Java output. dd means to include the leading zero for a single-digit day.

s Use , if you want to output a comma (this also appears after the year).

yyyy v represents the year. yy outputs a two-digit year and yyyy outputs a four-digit year.
hh h represents the hour. Use hh to include the leading zero if you’re outputting a single-digit hour.
¢ Use : if you want to output a colon.

mm m represents the minute omitting the leading zero if present. mm is more common and
represents the minutes using two digits.

@ Real World Scenario

Formatting Dates in Java 7 and Earlier

Formatting is roughly equivalent to the old way, as shown in Table 5.11; it just uses a
different class.

Summary 213

TABLE 5.11 Old vs. new way of formatting times

Old Way New Way (Java 8 and Later)
Formatting the SimpleDateFormat sf = new DateTimeFormatter f =
times SimpleDateFormat("hh:mm"); DateTimeFormatter.ofPattern(
sf.format(jan3); "hh:mm") ;

dt.format(f);

Let’s do a quick review. Can you figure out which of these lines will throw an exception?

: DateTimeFormatter f = DateTimeFormatter.ofPattern("hh:mm");
: f.format(dateTime);

: f.format(date);

¢ f.format(time);

~N o o b

If you get this question on the exam, think about what symbols represent. You have h for
hour and m for minute. Remember M (uppercase) is month and m (lowercase) is minute. You can
use this formatter only with objects containing times. Therefore, line 6 will throw an exception.

Now that you know how to convert a date or time to a formatted String, you’ll find
it easy to convert a String to a date or time. Just like the format () method, the parse()
method takes a formatter as well. If you don’t specify one, it uses the default for that type.

DateTimeFormatter f = DateTimeFormatter.ofPattern("MM dd yyyy");
LocalDate date = LocalDate.parse("01 02 2015", f);

LocalTime time = LocalTime.parse("11:22");
System.out.println(date); // 2015-01-02
System.out.println(time); /] 11:22

Here we show using both a custom formatter and a default value. This isn’t common,
but you might have to read code that looks like this on the exam. Parsing is consistent in
that if anything goes wrong, Java throws a runtime exception. It could be a format that
doesn’t match the String to be parsed or an invalid date.

Summary

A LocalDate contains just a date. A LocalTime contains just a time. A LocalDateTime con-
tains both a date and time. A ZonedDateTime adds a time zone. All four have private con-
structors and are created using LocalDate.now() or LocalDate.of() (or the equivalents for
that class). Instant represents a moment in time.

274 Chapter 5 = Dates, Strings, and Localization

Dates and times can be manipulated using plus__ or minus__ methods. The Period
class represents a number of days, months, or years to add to or subtract from a LocalDate,
LocalDateTime, or ZonedDateTime. The Duration class represents hours, minutes, and sec-
onds. It is used with LocalTime, LocalDateTime, or ZonedDateTime.

UTC represents the time zone offset from zero. Daylight savings time is observed in the
United States and other countries by moving the clocks ahead an hour in the spring and an
hour back in the fall. Java changes time and UTC offset to account for this.

You can create a Locale class with a desired language and optional country. The
language is a two-letter lowercase code, and the country is a two-letter uppercase
code. For example, en and en_US are locales for English and US English, respectively.
ResourceBundle allows specifying key/value pairs in a property file or in a Java class. Java
goes through candidate resource bundles from the most specific to the most general to
find a match. If no matches are found for the requested locale, Java switches to the default
locale and then finally the default resource bundle. Java looks at the equivalent Java class
before the property file for each locale. Once a matching resource bundle is found, Java
only looks in the hierarchy of that resource bundle to find keys.

NumberFormat uses static methods to retrieve the desired formatter, such as one for
currency. DateTimeFormatter is used to output dates and times in the desired format. The
date and time classes are all immutable, which means that the return value must be used or
the operation will be ignored.

Exam Essentials

Recognize invalid uses of dates and times. LocalDate does not contain time fields and
LocalTime does not contain date fields. Watch for operations being performed on the
wrong type. Also watch for adding or subtracting time and ignoring the result.

Differentiate between Period and Duration. Period is for day, month, and year. It can only
be used with LocalDate, LocalDateTime, and ZonedDateTime. Duration is for hours, minutes,
and seconds. It can only be used with LocalTime, LocalDateTime, and ZonedDateTime.

Perform calculations with dates. Be able to perform calculations between times using
UTC. Whether the format is -05:00, GMT-5, or UTC-5, you calculate by subtracting the
offset from the time and then seeing how far the resulting times are. Also be able to per-
form comparisons that include daylight savings time. In March, the United States springs
ahead an hour, and in November, it falls back an hour.

Identify valid and invalid locale strings. Know that the language code is lowercase and
mandatory. The country code is uppercase if present and follows the language code and an
underscore. Locale.Builder is an alternate way to create a Locale, and it allows calling the
setters in either order.

Exam Essentials 275

Determine which resource bundle Java will use to look up a key. Know the order that
Java uses to search for a matching resource bundle. Also recognize that the matching
resource bundle hierarchy is searched once a matching resource bundle is found.

Understand which Property value gets used as a default. When calling get (), nullis
returned if the key is not found. When calling getProperty (), there are two options. The
single-parameter version still returns null if the key is not found. The version that takes
two parameters uses the second parameter as a return value if the key is not found.

2176

Chapter 5 = Dates, Strings, and Localization

Review Questions

1. Which of the following creates valid locales, assuming that the language and country codes
follow standard conventions? (Choose all that apply.)

A.

Mmoo w

new Locale("hi");

new Locale("hi", "IN");
new Locale("IN");

new Locale("IN", "hi");
Locale.create("hi");

Locale.create("IN");

2. Which of the following are common types to localize? (Choose all that apply.)

Mmoo ® >

Booleans
Class names
Currency
Dates
Numbers

Variable names

3. Which of the following are true? (Choose all that apply.)

A.
B.

C.

All keys must be in the same resource bundle file to be used.

All resource bundles defined as Java classes can be expressed using the property file
format instead.

All resource bundles defined as property files can be expressed using the Java class list
bundle format instead.

Changing the default locale lasts for only a single run of the program.

It is forbidden to have both Props_en.java and Props_en.properties in the class-
path of an application.

4. Assume that all bundles mentioned in the answers exist and define the same keys. Which
one will be used to find the key in line 8?2

6:

o

Sowp

Locale.setDefault(new Locale("en", "US"));
ResourceBundle b = ResourceBundle.getBundle("Dolphins");
b.getString("name");

Dolphins.properties
Dolphins_en.java
Dolphins_en.properties

Whales.properties

Review Questions 2717

E. Whales_en_US.properties

F. The code does not compile.

Suppose that we have the following property files and code. Which bundles are used on
lines 8 and 9 respectively?

Dolphins.properties
name=The Dolphin
age=0

Dolphins_en.properties
name=Dolly
age=4

Dolphins_fr.properties
name=Dolly

Locale fr = new Locale("fr");

Locale.setDefault(new Locale("en", "US"));

ResourceBundle b = ResourceBundle.getBundle("Dolphins", fr);
b.getString("name");

©O© 00 N o U

b.getString("age");

Dolphins.properties and Dolphins.properties
Dolphins.properties and Dolphins_en.properties
Dolphins_en.properties and Dolphins_en.properties

Dolphins_fr.properties and Dolphins.properties

moowp

Dolphins_fr.properties and Dolphins_en.properties
F. The code does not compile.

Which of the following can be inserted into the blank to create a date of June 21, 2014?
(Choose all that apply.)

import java.time.*;

public class StartOfSummer {
public static void main(String[] args) {
LocalDate date =
I3

A. new LocalDate(2014, 5, 21);
new LocalDate(2014, 6, 21);
LocalDate.of (2014, 5, 21);
LocalDate.of (2014, 6, 21);

Cow

218

Chapter 5 = Dates, Strings, and Localization

E. LocalDate.of(2014, Calendar.JUNE, 21);
F. LocalDate.of(2014, Month.JUNE, 21);

What is the output of the following code?

LocalDate date = LocalDate.parse(
"2018-04-30", DateTimeFormatter.ISO_LOCAL_DATE);
date.plusDays(2);
date.plusHours(3);
System.out.println(date.getYear() + " "

+ date.getMonth() + " "+ date.getDayOfMonth());

2018 APRIL 2
2018 APRIL 30
2018 MAY 2

The code does not compile.

moowp»

A runtime exception is thrown.

What is the output of the following code?

LocalDate date = LocalDate.of (2018, Month.APRIL, 40);
System.out.println(date.getYear() + " " + date.getMonth()
+ " "+ date.getDayOfMonth());

2018 APRIL 4
2018 APRIL 30
2018 MAY 10
Another date

The code does not compile.

mmo o ® >

A runtime exception is thrown.
What is the output of the following code?

LocalDate date = LocalDate.of (2018, Month.APRIL, 30);
date.plusDays(2);
date.plusYears(3);
System.out.println(date.getYear() + " "
+ date.getMonth() + " "+ date.getDayOfMonth());

2018 APRIL 2
2018 APRIL 30
2018 MAY 2
2021 APRIL 2

Soowp»

E.
F.

Review Questions

2021 APRIL 30
2021 MAY 2

G. A runtime exception is thrown.

10. What is the output of the following code?

1.

12.

LocalDateTime d = LocalDateTime.of (2015, 5, 10, 11, 22, 33);
Period p = Period.of(1, 2, 3);

d:

d.minus(p);

DateTimeFormatter f = DateTimeFormatter.

ofLocalizedTime(FormatStyle.SHORT);

System.out.println(d.format(f));

®©mMmoowp

3/7/14 11:22 AM
5/10/15 11:22 AM
3/7/14

5/10/15

11:22 AM

The code does not compile.

A runtime exception is thrown.

What is the output of the following code?

LocalDateTime d = LocalDateTime.of (2015, 5, 10, 11, 22, 33);
Period p = Period.ofDays(1).ofYears(2);

d =

d.minus(p);

DateTimeFormatter f = DateTimeFormatter.

ofLocalizedDateTime(FormatStyle.SHORT);

System.out.println(f.format(d));

Which of the answer choices is true given the following code? (Choose all that apply.)

A
B.
C.
D
E

G

5/9/13 11:22 AM
5/10/13 11:22 AM
5/9/14

5/10/14

The code does not compile.

A runtime exception is thrown.

2016-08-28T05:00 GMT-04:00
2016-08-28T09:00 GMT-06:00

219

280

13.

14.

Chapter 5 = Dates, Strings, and Localization

The first date/time is earlier.

The second date/time is earlier.
Both date/times are the same.
The date/times are 2 hours apart.

The date/times are 6 hours apart.

mmo o ® >

The date/times are 10 hours apart.

Note that March 13, 2016, is the weekend that clocks spring ahead for daylight savings
time. What is the output of the following?

LocalDate date = LocalDate.of (2016, Month.MARCH, 13);
LocalTime time = LocalTime.of (1, 30);

Zoneld zone = Zoneld.of("US/Eastern");

ZonedDateTime dateTimel = ZonedDateTime.of(date, time, zone);
ZonedDateTime dateTime2 = dateTimel.plus(l, ChronoUnit.HOURS);

long hours = ChronoUnit.HOURS.between(dateTimel, dateTime2);
int clockl = dateTimel.getHour();

int clock2 = dateTime2.getHour();

System.out.println(hours + "," + clockl + "," + clock2);

1,1,2
1,1,3
2,1,2
2,1,3

The code does not compile.

Mmoo w >

A runtime exception is thrown.

Note that March 13, 2016, is the weekend that we spring forward, and November 6, 2016,
is when we fall back for daylight savings time. Which of the following can fill in the blank
without the code throwing an exception?

Zoneld zone = Zoneld.of("US/Eastern");
LocalDate date = ;
LocalTime timel = LocalTime.of(2, 15);
ZonedDateTime a = ZonedDateTime.of(date4, timel, zone);

A. LocalDate.of(2016, 3, 13)
LocalDate.of (2016, 3, 40)
LocalDate.of (2016, 11, 6)
LocalDate.of (2016, 11, 7)
LocalDate.of (2017, 2, 29)

moow

15.

16.

17.

Review Questions 281

Given the following code, which of the answer choices can fill in the blank to print true?
(Choose all that apply.)

String ml = Duration.of(1l, ChronoUnit.MINUTES).toString();
String m2 = Duration.ofMinutes(1).toString();
String s = Duration.of (60, ChronoUnit.SECONDS).toString();

String d = Duration.ofDays(1).toString();
String p = Period.ofDays(1).toString();

)3

System.out.println(

A. ml ==m2

B. ml.equals(m2)
C. ml.equals(s)
D. d==p

E. d.equals(p)

Given the following, which answers can correctly fill in the blank? (Choose all that apply.)

LocalDate date = LocalDate.now();

LocalTime time = LocalTime.now();

LocalDateTime dateTime = LocalDateTime.now();

ZoneIld zoneId = Zoneld.systemDefault();

ZonedDateTime zonedDateTime = ZonedDateTime.of(dateTime, zoneld);
long epochSeconds = 0;

Instant instant = H

Instant.now()
Instant.ofEpochSecond(epochSeconds)
date.toInstant()
dateTime.toInstant()
time.toInstant()

mmo o>

zonedDateTime.toInstant()

What is the output of the following method if props contains {veggies=brontosaurus,
meat=velociraptor}?

private static void print(Properties props) {
System.out.println(props.get("veggies", "none"
+ " " + props.get("omni", "none"));

282

18.

19.

20.

Mmoo ®w >

Chapter 5 = Dates, Strings, and Localization

brontosaurus none
brontosaurus null

none none

none null

The code does not compile.

A runtime exception is thrown.

Which of the following prints out all of the values in props?

A.
B.

C.

props.keys().stream().map(k -> k .forEach(System.out::println);

props.keys().stream().map(k -> props.get(k))
.forEach(System.out::println);

props.keySet().stream().map(k -> k) .forEach(System.out::println);

props.keySet().stream().map(k -> props.get(k))
.forEach(System.out::println);

props.stream().map(k -> k) .forEach(System.out::println);
props.stream().map(k -> props.get(k)) .forEach(System.out::println);

Which of the following are stored in a Period object? (Choose all that apply.)

Mmoo ® >

Year
Month
Day
Hour
Minute

Second

Which of the following objects could contain the information “eastern standard time”?
(Choose all that apply.)

A.

moow

Instant
LocalDate
LocalDateTime
LocalTime

ZonedDateTime

Exceptions and
Assertions

THE OCP EXAM TOPICS COVERED IN THIS
CHAPTER INCLUDE THE FOLLOWING:

v Exceptions and Assertions

Use try-catch and throw statements

Use catch, multi-catch, and finally clauses

Use Autoclose resources with a try-with-resources statement
Create custom exceptions and Auto-closeable resources

Test invariants by using assertions

You have already learned the basics of exceptions for the
OCA. While reviewing these basics, we will point out the
additional exception classes that you are expected to know for
the OCP. We will also cover the more advanced features introduced in Java 7 for working

with exceptions. We will end the chapter by introducing assertions.

Reviewing Exceptions

A program can fail for just about any reason. Here are just a few of the possibilities for pro-
gram failure that are commonly covered on the OCP exam:

* Your program tries to read a file that doesn’t exist.

* Your program tries to access a database, but the network connection to the database is
unavailable.

* You made a coding mistake and wrote an invalid SQL statement in your JDBC code.

* You made a coding mistake and used the wrong format specifiers when using
DateTimeFormatter.

As you can see, some of these are coding mistakes. Others are completely beyond your
control. Your program can’t help it if the network connection goes down. What it can do is
deal with the situation.

Questions about exceptions can show up in any topic on the exam. This means that you
might see a question that appears to be about threads, but it is really testing your knowl-
edge about exception handling. We will show code using topics covered in later chapters
in the book to get you used to this. We promise that the end-of-chapter questions will not
assume that you know about these topics just yet.

Even if you mastered exceptions for the OCA, we recommend reading the following
review sections in any event because they use classes that you didn’t see on the OCA. We
will cover the key terms used with exceptions, syntax, and rules for working with excep-
tions. We will also let you know which exception classes you should be familiar with.

Exceptions Terminology

An exception is Java’s way of saying, “I give up. I don’t know what to do right now. You
deal with it.” When you write a method, you can either deal with the exception or make it
the calling code’s problem.

Reviewing Exceptions 285

The happy path is when nothing goes wrong. With bad code, there might not be
a happy path. For example, your code might have a bug where it always throws a
NullPointerException. In this case, you have an exception path but not a happy path,
because execution can never complete normally.

Categories of Exceptions

For the OCA, you learned about the major categories of exception classes. Figure 6.1
reviews the hierarchy of these classes. Remember that a runtime exception, or unchecked
exception, may be caught, but it is not required that it be caught. After all, if you had to
check for NullPointerException, every piece of code that you wrote would need to deal
with it. A checked exception is any class that extends Exception but is not a runtime
exception. Checked exceptions must follow the handle or declare rule where they are either
caught or thrown to the caller. An error is fatal and should not be caught by the program.
While it is legal to catch an error, it is not a good practice.

FIGURE 6.1 Categories of exceptions

java.lang.Object

java.lang.Throwable

T

java.lang.Exception java.lang.Error

java.lang.RuntimeException

These rules are very important. Make sure that you can fill in Table 6.1 from memory.
If you need more review on the differences, we recommend getting out your OCA study
materials.

286 Chapter 6 = Exceptions and Assertions

TABLE 6.1 Types of exceptions

Recommended for Is program required

Type How to recognize program to catch? to catch or declare?
Runtime RuntimeException orits subclasses Yes No

exception

Checked Exception orits subclasses but not Yes Yes

exception RuntimeException orits subclasses

Error Error orits subclasses No No

Exceptions on the OCP

On the OCA, you had to know about only a handful of exceptions. As a review, these
exceptions were as follows:

ArithmeticException Thrown by the JVM when code attempts to divide by zero.

ArrayIndexOutOfBoundsException Thrown by the JVM when code uses an illegal
index to access an array.

ClassCastException Thrown by the JVM when an attempt is made to cast an object to
a subclass of which it is not an instance.

IllegalArgumentException Thrown by the program to indicate that a method has
been passed an illegal or inappropriate argument.

NullPointerException Thrown by the JVM when there is a null reference where an
object is required.

NumberFormatException Thrown by the program when an attempt is made to convert
a string to a numeric type, but the string doesn’t have an appropriate format.

You also learned that java.io.I0Exception is an example of a checked exception.

This made it easier, because the exam needed to tell you when an exception was a checked
exception other than an I0Exception.

On the OCP, you need to know more exceptions. The objectives cover a number of APIs
that throw a mix of checked and unchecked exceptions.

Table 6.2 and Table 6.3 provide a summary of the checked and runtime exceptions that
you need to know for the exam. It’s OK if you don’t know what all of these do yet. Just
remember that IO, parsing, and SQL exceptions are checked. Anything else is a runtime
exception unless the exam states otherwise. You can come back to this later for review.

Reviewing Exceptions 287

TABLE 6.2 OCP checked exceptions

Checked or Where to find
Exception Used when unchecked? more details
java.text.ParseException Converting a String Checked Chapter 5
to a number.
java.io.IOException Dealing with 10 Checked Chapter 9
java.io.FileNotFound and NIO.2 issues.
Exception IOException is the
. . L. parent class. There
java.io.NotSerializable are a number of
Exception subclasses. You can
assume any java.
jo exception is
checked.
java.sql.SQLException Dealing with Checked Chapter 10
database issues.
SQLException is the
parent class. Again,
you can assume any
java.sql exception
is checked.
TABLE 6.3 OCP runtime exceptions
Checked or Where to find
Exception Used when unchecked? more details
java.lang.ArrayStoreException Trying to store Unchecked Chapter 3
the wrong data
type in an array.
java.time.DateTimeException Receiving an Unchecked Chapter 3
invalid format
string for a date.
java.util.MissingResourceException Trying to access Unchecked Chapter 5

a key or resource
bundle that does

not exist.

288 Chapter 6 = Exceptions and Assertions

TABLE 6.3 OCP runtime exceptions (continued)

Checked or Where to find

Exception Used when unchecked? more details
java.lang.IllegalStateException Attempting to Unchecked Chapters 3
java.lang. run an invalid and 7

operation in
collections and
concurrency.

UnsupportedOperationException

Try Statement

On the OCA exam, you learned that the syntax of a try statement looks like Figure 6.2.
The try statement consists of a mandatory try clause. It can include one or more catch
clauses to handle the exceptions that are thrown. It can also include a finally clause, which
runs regardless of whether an exception is thrown. This is all still true for both try state-
ments and try-with-resources statements.

FIGURE 6.2 The syntax of a try statement

Afinally block can only
appear as part of a try
statement.

try{
//protected code
}catch (exceptiontype identifier) {
//exception handler
}Einally{
//finally block
}

The finally block
always executes,
whether or not an

The finally keyword exception occurs
in the try block.

There is also a rule that says a try statement is required to have either or both of
the catch and finally clauses. This is true for try statements, but is not true for
try-with-resources statements, as you’ll see later in the chapter.

Creating Custom Exceptions 289

There are two other rules that you need to remember from the OCA about the catch
clauses:

= Java checks the catch blocks in the order in which they appear. It is illegal to declare
a subclass exception in a catch block that is lower down in the list than a superclass
exception because it will be unreachable code.

= Java will not allow you to declare a catch block for a checked exception type
that cannot potentially be thrown by the try clause body. This is again to avoid
unreachable code.

Throw vs. Throws

The exam might test whether you are paying attention to the difference between throw and
throws. Remember that throw means an exception is actually being thrown and throws
indicate that the method merely has the potential to throw that exception. The following
example uses both:

10: public String getDataFromDatabase() throws SQLException {
11: throw new UnsupportedOperationException();
12: }

Line 10 declares that the method might or might not throw a SQLException. Since this is
a checked exception, the caller needs to handle or declare it. Line 11 actually does throw an
UnsupportedOperationException. Since this is a runtime exception, it does not need to be
declared on line 10.

This arrangement might seem strange but is actually a common pattern. The
implementer of this method hasn’t written the logic to go to the database yet. Maybe the
database isn’t available. The method still declares that it throws a SQLException, so any
callers handle it right away and aren’t surprised later by a change in method signature.

Remember to pay attention that throw and throws aren’t reversed in the
JTE code that you see on the exam.

Creating Custom Exceptions

Java provides many exception classes out of the box. Sometimes, you want to write a
method with a more specialized type of exception. You can create your own exception class
to do this.

When creating your own exception, you need to decide whether it should be a checked
or unchecked exception. While you can extend any exception class, it is most common to
extend Exception (for checked) or RuntimeException (for unchecked.)

290 Chapter 6 = Exceptions and Assertions

Creating your own exception class is really easy. Can you figure out whether the
exceptions are checked or unchecked in this example?

class CannotSwimException extends Exception {}
class DangerInTheWater extends RuntimeException {}
class SharkInTheWaterException extends DangerInTheWater {}
class Dolphin {
public void swim() throws CannotSwimException {
// logic here

© ~N O U A WN

}

On line 1, we have a checked exception because it extends directly from Exception. Not
being able to swim is pretty bad when we are trying to swim, so we want to force callers
to deal with this situation. On line 2, we have an unchecked exception because it extends
directly from RuntimeException. On line 3, we have another unchecked exception because
it extends indirectly from RuntimeException. It is pretty unlikely that there will be a shark
in the water. We might even be swimming in a pool where the odds of a shark are 0 per-
cent! We don’t want to force the caller to deal with everything that might remotely happen,
so we leave this as an unchecked exception.

Lines 5-7 are a method that declares it might throw the checked
CannotSwimException. The method implementation could be written to actually
throw it or not. The method implementation could also be written to throw a
SharkInTheWaterException, an ArrayIndexOutOfBoundsException, or any other runtime
exception.

These one-liner exception declarations are pretty useful, especially on the exam where
they need to communicate quickly whether an exception is checked or unchecked. Let’s see
how to pass more information in your exception.

The following example shows the three most common constructors defined by the
Exception class:

public class CannotSwimException extends Exception {
public CannotSwimException() {

super();

}

public CannotSwimException(Exception e) {
super(e);

}

public CannotSwimException(String message) {
super (message) ;

The first constructor is the default constructor with no parameters. The second
constructor shows how to wrap another exception inside yours. The third constructor
shows how to pass a custom error message.

Using Multi-catch 291

Remember from the OCA that the default constructor is provided automati-
OTE cally if you don’t write any constructors of your own.

Using a different constructor allows you to provide more information about what went
wrong. We would get output like this if we wrote a main method with the line throw new
CannotSwimException();:

Exception in thread "main" CannotSwimException
at CannotSwimException.main(CannotSwimException.java:18)

This gives us just the exception and location. Now we change the main method to wrap
an exception using the line throw new CannotSwimException(new RuntimeException());:

Exception in thread "main" CannotSwimException: java.lang.RuntimeException
at CannotSwimException.main(CannotSwimException.java:19)
Caused by: java.lang.RuntimeException
1 more

This time, we find the underlying RuntimeException as well. Finally, we change the main
method to pass a message using the line throw new CannotSwimException("broken fin");:

Exception in thread "main" CannotSwimException: broken fin
at CannotSwimException.main(CannotSwimException.java:20)

This time we see the message text in the result. You might want to provide more infor-
mation about the exception depending on the problem.

The error messages that we’ve been showing are called a stack trace. They show the
exception along with the method calls it took to get there. Java automatically prints the
stack trace when the program handles an exception.

You can also print the stack trace on your own:

try {
throw new CannotSwimException();
} catch (CannotSwimException e) {
e.printStackTrace();

Using Multi-catch

When something goes wrong in a program, it is common to log the error and convert it to a
different exception type. In this example, we print the stack trace rather than write to a log.
Next, we throw a runtime exception:

2: public static void main(String[] args) {
3: try {

292 Chapter 6 = Exceptions and Assertions

4: Path path = Paths.get("dolphinsBorn.txt");
5: String text = new String(Files.readAllBytes(path));
6: LocalDate date = LocalDate.parse(text);

7: System.out.println(date);

8: } catch (DateTimeParseException e) {

9: e.printStackTrace();

10: throw new RuntimeException(e);

11: } catch (I0Exception e) {

12: e.printStackTrace();

13: throw new RuntimeException(e);

14: } 3}

Lines 4 and 5 read a text file into a String. We cover this in Chapter 9, “NIO.2.” For now,
it does what it sounds like and throws an I0Exception if the operation fails. Line 6 converts
that String to a LocalDate. You saw in Chapter 5, “Dates, Strings, and Localization,” that
this throws a DateTimeParseException on failure. The two catch blocks on lines 8-14 print
a stack trace and then wrap the exception in a RuntimeException.

This works. However, duplicating code is bad. Think about what happens if we decide
that we want to change the code to write to a log file instead of printing the stack trace. We
have to be sure to change the code in two places. Before Java 7, there were two approaches
to deal with this problem. One was to catch Exception instead of the specific types:

public static void main(String[] args) {

try {
Path path = Paths.get("dolphinsBorn.txt");
String text = new String(Files.readAllBytes(path));
LocalDate date = LocalDate.parse(text);
System.out.println(date);

} catch (Exception e) { // BAD approach
e.printStackTrace();
throw new RuntimeException(e);

I

The duplicate code is gone. However, this isn’t a good approach because it catches
other exceptions too. For example, suppose that we had incorrect code that threw a
NullPointerException. The catch block would catch it, which was never the intent.

The other approach is to extract the duplicate code into a helper method:

public static void main(String[] args) {
try {
Path path = Paths.get("dolphinsBorn.txt");
String text = new String(Files.readAllBytes(path));
LocalDate date = LocalDate.parse(text);
System.out.println(date);

Using Multi-catch 293

} catch (DateTimeParseException e) {
handleException(e);

} catch (IOException e) {
handleException(e);

}

private static void handleException(Exception e) {
e.printStackTrace();
throw new RuntimeException(e);

The duplicate code is mostly gone now. We still have a little duplication in that the code
calls handleException() in two places. The code also is longer and a bit harder to read.

The Java language designers recognized that this situation is an undesirable tradeoff. In
Java 7, they introduced the ability to catch multiple exceptions in the same catch block,
also known as multi-catch. Now we have an elegant solution to the problem:

public static void main(String[] args) {

try {
Path path = Paths.get("dolphinsBorn.txt");
String text = new String(Files.readAllBytes(path));
LocalDate date = LocalDate.parse(text);
System.out.println(date);

} catch (DateTimeParseException | IOException e) {
e.printStackTrace();
throw new RuntimeException(e);

I

This is much better. There’s no duplicate code, the common logic is all in one place, and
the logic is exactly where we would expect to find it.

Figure 6.3 shows the syntax of multi-catch. It’s like a regular catch clause, except two
or more exception types are specified separated by a pipe. The pipe is also used as the “or”
operator, making it easy to remember that you can use either/or of the exception types.
Notice how there is only one variable name in the catch clause. Java is saying that the
variable named e can be of type Exceptionl or Exception2.

FIGURE 6.3 The syntax of multi-catch

Catch either of these exceptions
try {
//protected code

} catch(Exceptionl | Exception2 e) {
//exception handler

294 Chapter 6 = Exceptions and Assertions

The exam might try to trick you with invalid syntax. Remember that the exceptions can
be listed in any order within the catch clause. However, the variable name must appear
only once and at the end. Do you see why these are valid or invalid?

catch(Exceptionl e | Exception2 e | Exception3 e) // DOES NOT COMPILE
catch(Exceptionl el | Exception2 e2 | Exception3 e3) // DOES NOT COMPILE

catch(Exceptionl | Exception2 | Exception3 e)

The first line is incorrect because the variable name appears three times. Just because it
happens to be the same variable name doesn’t make it OK. The second line is incorrect because
the variable name again appears three times. Using different variable names doesn’t make it any
better. The third line does compile. It shows the correct syntax for specifying three exceptions.

Java intends multi-catch to be used for exceptions that aren’t related, and it prevents you
from specifying redundant types in a multi-catch. Do you see what is wrong here?

try {
throw new IOException();
} catch (FileNotFoundException | IOException e) { } // DOES NOT COMPILE

FileNotFoundException is a subclass of I0OException. Specifying it in the multi-catch is
redundant, and the compiler gives a message such as this:

The exception FileNotFoundException is already caught by the alternative IOException

Since we can omit that exception type without changing the behavior of the program,
Java does not allow declaring it. The correct code is as follows:

try {
throw new IOException();
} catch (IOException e) { }

Multi-catch Is Effectively Final

This try statement is legal. It is a bad idea to reassign the variable in a catch block, but it
is allowed:

try {
// do some work

} catch(RuntimeException e) {
e = new RuntimeException();

Using Multi-catch

295

When adding multi-catch, this pattern is no longer allowed:

try {
throw new IOException();
} catch(IOException | RuntimeException e) {
e = new RuntimeException(); // DOES NOT COMPILE

}

With multi-catch, we no longer have a specific type of exception. Java uses the common
Exception superclass for the variable internally. However, the intent isn't really to have any
old random exception in there. It wouldn’t make sense to shove an IllegalStateException
in e. That would just make the code more complicated. Imagine that you wanted to rethrow
the exception and it could be any old type. To avoid these problems and complexity, Java
forbids reassigning the exception variable in a multi-catch situation.

This is scarcely a hardship given that it is bad practice to reassign the variable to begin
with! Since Java is big on backward compatibility, this bad practice is still permitted
when catching a single exception type.

To review multi-catch, see how many errors you can find in this try statement.

11: public void doesNotCompile() { // METHOD DOES NOT COMPILE
12: try {

13: mightThrow();

14: } catch (FileNotFoundException | IllegalStateException e) {
15: } catch (InputMismatchException e | MissingResourceException e) {
16: } catch (SQLException | ArrayIndexOutOfBoundsException e) {

17: } catch (FileNotFoundException | IllegalArgumentException e) {

18: } catch (Exception e) {

19: } catch (IOException e) {

20: }

21: }

22: private void mightThrow() throws DateTimeParseException, IOException { }

This code is just swimming with errors. In fact, some errors hide others, so you might
not see them all in the compiler. Once you start fixing some errors, you’ll see the others.
Here’s what’s wrong:

= Line 15 has an extra variable name. Remember that there can be only one exception
variable per catch block.

296 Chapter 6 = Exceptions and Assertions

= Line 18 and 19 are reversed. The more general superclasses must be caught after
their subclasses. While this doesn’t have anything to do with multi-catch, you’ll see
“regular” catch block problems mixed in with multi-catch.

= Line 17 cannot catch FileNotFoundException because that exception was already
caught on line 15. You can’t list the same exception type more than once in the same
try statement, just like with “regular” catch blocks.

= Line 16 cannot catch SQLException because nothing in the try statement can
potentially throw one. Again, just like “regular” catch blocks, any runtime exception
may be caught. However, only checked exceptions that have the potential to be thrown
are allowed to be caught.

Don’t worry—you won’t see this many problems in the same example on the exam!

Using Try-With-Resources

Multi-catch allows you to write code without duplication. Another problem arises with duplica-
tion in finally blocks. As you’ll see in Chapters 8, 9, and 10, it is important to close resources
when you are finished with them. For the exam, a resource is typically a file or database.

Imagine that you want to write a simple method to read the first line of one file and
write it to another file. Prior to Java 7, your code would look like the following. Pay atten-
tion to the try-catch statements. You’ll learn how to write the actual code by reading and
writing code in Chapter 9.

10: public void oldApproach(Path pathl, Path path2) throws IOException {

11: BufferedReader in = null;

12: BufferedWriter out = null;

13: try {

14: in = Files.newBufferedReader (pathl);
15: out = Files.newBufferedWriter(path2);
16: out.write(in.readLine());

17: } finally {

18: if (in != null) in.close();

19: if (out != null) out.close();

20: }

21: }

That’s twelve lines of code to do something quite simple, and we don’t even deal with
catching the exception. The sidebar, “Ensuring Resources Are Closed,” explains why so
much code is needed to do something so simple. Switching to the try-with-resources syntax
introduced in Java 7, it can be rewritten as follows:

30: public void newApproach(Path pathl, Path path2) throws IOException {
31: try (BufferedReader in = Files.newBufferedReader (pathl);
32: BufferedWriter out = Files.newBufferedWriter(path2)) {

Using Try-With-Resources 297

33: out.write(in.readLine());
34: }
35: }

The new version has half as many lines! There is no longer code just to close resources.
The new try-with-resources statement automatically closes all resources opened in the
try clause. This feature is also known as automatic resource management, because Java
automatically takes care of the closing.

In the following sections, we will look at the try-with-resources syntax and how to
indicate a resource can be automatically closed. We will introduce suppressed exceptions.

@ Real World Scenario

Ensuring Resources Are Closed

Although it is beyond the scope of the exam, we sometimes come across code that
appears to guarantee resource closure, but in fact it does not. Take a look at the following
code snippet for closing resources:

} finally {
if (in != null) in.close();
if (out != null) out.close();
}

Can you spot any problem with this code snippet that could lead to a resource leak? If
in.close() throws an exception, then out.close() will never be executed, leaving us
with an unclosed resource! A better implementation follows:

} finally {
try {
in.close();
} catch (IOException e) {}
try {
out.close();
} catch (IOException e) {}

3

We swallow the exceptions to ensure both close methods are executed, although we
could certainly note that the exceptions occurred in a local variable and rethrow them
after both close requests have been made.

As you might imagine, writing this code correctly is error prone. You have to remember to close
all of the resources that you open. You also have to make sure that they remain independent of
each other. Luckily, try-with-resources avoids the need to keep writing code like this by hand!

298 Chapter 6 = Exceptions and Assertions

Try-With-Resources Basics

You might have noticed that there is no finally block in the try-with-resources code. For the
OCA exam, you learned that a try statement must have one or more catch blocks or a finally
block. This is still true. The finally clause exists implicitly. You just don’t have to type it.

Remember that only a try-with-resources statement is permitted to omit
TE both the catch and finally blocks. A traditional try statement must have

either or both.

Figure 6.4 shows what a try-with-resources statement looks like. Notice that one or
more resources can be opened in the try clause. Also, notice that parentheses are used to
list those resources and semicolons are used to separate the declarations. This works just
like declaring multiple indexes in a for loop.

FIGURE 6.4 The syntax of a basic try-with-resources

Any resources that should automatically be closed

try (BufferedReader r = Files.newBufferedReader (pathl) ;
BufferedWriter w = Files.newBufferedWriter (path2)) ({
// protected code

Resources are closed at this point

Figure 6.5 shows that a try-with-resources statement is still allowed to have catch and/
or finally blocks. They are run in addition to the implicit one. The implicit finally block
runs before any programmer-coded ones.

FIGURE 6.5 The syntax of try-with-resources including catch/finally

Any resources that should automatically be closed

try (BufferedReader r = Files.newBufferedReader (pathl) ;
BufferedWriter w = Files.newBufferedWriter (path2)) ({
//protected code

} catch (IOException e) {
// exeption handler

Optional clauses; resources still
} finally { closed automatically

// finally block

Using Try-With-Resources 299

To make sure that you’ve wrapped your head around the differences, make sure you can
fill in Table 6.4 and Table 6.5 with whichever combinations of catch and finally blocks
are legal configurations.

TABLE 6.4 Legalvs.illegal configurations with a traditional try statement

0 finally blocks 1 finally block 2 or more finally blocks

0 catch blocks Not legal Legal Not legal

1 or more catch blocks Legal Legal Not legal

TABLE 6.5 Legalvs.illegal configurations with a try-with-resources statement

0 finally blocks 1 finally block 2 or more finally blocks

0 catch blocks Legal Legal Not legal

1 or more catch blocks Legal Legal Not legal

The resources created in the try clause are only in scope within the try block. This is
another way to remember that the implicit finally runs before any catch/finally blocks
that you code yourself. The implicit close has run already, and the resource is no longer
available. Do you see why lines 6 and 8 don’t compile in this example?

3 try (Scanner s = new Scanner(System.in)) {
4 s.nextLine();

5 } catch(Exception e) {

6: s.nextInt(); // DOES NOT COMPILE

7 } finally{

8 s.nextInt(); // DOES NOT COMPILE

9 }

The problem is that Scanner has gone out of scope at the end of the try clause. Lines 6
and 8 do not have access to it. This is actually a nice feature. You can’t accidentally use an
object that has been closed. In a traditional try statement, the variable has to be declared
before the try statement so that both the try and finally blocks can access it, which has
the unpleasant side effect of making the variable in scope for the rest of the method, just
inviting you to call it by accident.

300 Chapter 6 = Exceptions and Assertions

AutoCloseable

You can’t just put any random class in a try-with-resources statement. Java commits to
closing automatically any resources opened in the try clause. Here we tell Java to try to
close the Turkey class when we are finished with it:

public class Turkey {
public static void main(String[] args) {
try (Turkey t = new Turkey()) { // DOES NOT COMPILE
System.out.println(t);

Java doesn’t allow this. It has no idea how to close a Turkey. Java informs us of this fact
with a compiler error:

The resource type Turkey does not implement java.lang.AutoCloseable

In order for a class to be created in the try clause, Java requires it to implement an inter-
face called AutoCloseable. TurkeyCage does implement this interface:

1 public class TurkeyCage implements AutoCloseable {
2 public void close() {

3 System.out.println("Close gate");

4 }

5: public static void main(String[] args) {

6: try (TurkeyCage t = new TurkeyCage()) {

7 System.out.println("put turkeys in");

8
9

10: }

That’s much better. Line 1 declares that the class implements the AutoCloseable inter-
face. This interface requires a close() method to be implemented, which is done on lines
2-4. Now, line 6 is allowed. Java does know how to close a TurkeyCage object. All Java has
to do is to call the close() method.

The AutoCloseable interface has only one method to implement:

public void close() throws Exception;

Wait—TurkeyCage didn’t throw an Exception. That’s OK because an overriding method
is allowed to declare more specific exceptions than the parent or even none at all. By declar-
ing Exception, the AutoCloseable interface is saying that implementers may throw any
exceptions they choose.

Using Try-With-Resources 301

The following shows what happens when an exception is thrown. Do you see any prob-
lems with it?

public class StuckTurkeyCage implements AutoCloseable {
public void close() throws Exception {
throw new Exception("Cage door does not close");
}
public static void main(String[] args) {
try (StuckTurkeyCage t = new StuckTurkeyCage()) { // DOES NOT COMPILE
System.out.println("put turkeys in");

The try-with-resources statement throws a checked exception. And you know that
checked exceptions need to be handled or declared. Tricky isn’t it? This is something that
you need to watch for on the exam. If the main() method declared an Exception, this code
would compile.

Java strongly recommends that close () not actually throw Exception. It is better to
throw a more specific exception. Java also recommends to make the close() method
idempotent. Idempotent means that the method can called be multiple times without any
side effects or undesirable behavior on subsequent runs. For example, it shouldn’t throw
an exception the second time or change state or the like. Both these negative practices are
allowed. They are merely discouraged.

To better understand this, see which implementation you think is best:

class ExampleOne implements AutoCloseable {
public void close() throws IllegalStateException {
throw new IllegalStateException("Cage door does not close");

}
class ExampleTwo implements AutoCloseable {
public void close() throws Exception {
throw new Exception("Cage door does not close");

}
class ExampleThree implements AutoCloseable {
static int COUNT = 0;
public void close() {
COUNT++;

302 Chapter 6 = Exceptions and Assertions

ExampleOne is the best implementation. ExampleTwo throws Exception rather than
a more specific subclass, which is not recommended. ExampleThree has a side effect. It
changes the state of a variable. Side effects are not recommended.

@ Real World Scenario

AutoCloseable vs. Closeable

The AutoCloseable interface was introduced in Java 7. Before that, another interface
existed called Closeable. It was similar to what the language designers wanted, with the
following exceptions:

= Closeable restricts the type of exception thrown to IOException.
= Closeable requires implementations to be idempotent.

The language designers emphasize backward compatibility. Since changing the exist-
ing interface was undesirable, they made a new one called AutoCloseable. This new
interface is less strict than Closeable. Since Closeable meets the requirements for
AutoCloseable, it started implementing AutoCloseable when the latter was introduced.

Suppressed Exceptions

What happens if the close () method throws an exception? If the TurkeyCage doesn’t close,
the turkeys could all escape. Clearly we need to handle such a condition.
We already know that the resources are closed before any programmer-coded catch
blocks are run. This means that we can catch the exception thrown by close() if we wish.
Alternatively, we can allow the caller to deal with it. Just like a regular exception, checked
exceptions must be handled or declared. Runtime exceptions do not need to be acknowledged.
The following shows how we can catch an exception thrown by close().

public class JammedTurkeyCage implements AutoCloseable {
public void close() throws IllegalStateException {
throw new IllegalStateException("Cage door does not close");
}
public static void main(String[] args) {
try (JammedTurkeyCage t = new JammedTurkeyCage()) {
System.out.println("put turkeys in");
} catch (IllegalStateException e) {
System.out.println("caught: " + e.getMessage());

Using Try-With-Resources 303

The close() method is automatically called by try-with-resources. The catch block
catches it and prints caught: Cage door does not close.

Note that if JammedTurkeyCage’s close () method threw a checked exception, the try
statement in the main method would need to catch it, or the main method would need to
throw it.

This seems reasonable enough. What happens if the try block also throws an exception?
Java 7 added a way to accumulate exceptions. When multiple exceptions are thrown, all but
the first are called suppressed exceptions. The idea is that Java treats the first exception as
the primary one and tacks on any that come up while automatically closing, for example:

15: try (JammedTurkeyCage t = new JammedTurkeyCage()) {

16: throw new IllegalStateException("turkeys ran off");
17: } catch (IllegalStateException e) {

18: System.out.println("caught: " + e.getMessage());
19: for (Throwable t: e.getSuppressed())

20: System.out.println(t.getMessage());

21: }

Line 16 throws the primary exception. At this point, the try clause ends and Java auto-
matically calls the close() method. It throws an IllegalStateException, which is added
as a suppressed exception. Then line 17 catches the primary exception. Line 18 prints the
message for the primary exception. Line 19 loops through the one suppressed exception
and line 20 prints it out. The output is

caught: turkeys ran off
Cage door does not close

Keep in mind that the catch block looks for matches on the primary exception. What do
you think this code prints?

22: try (JammedTurkeyCage t = new JammedTurkeyCage()) {

23: throw new RuntimeException("turkeys ran off");
24: } catch (IllegalStateException e) {

25: System.out.println("caught: " + e.getMessage());
26: }

Line 23 throws the primary exception. Java again calls the close () method and adds a
suppressed exception. Line 24 would catch an IllegalStateException. However, we don’t
have one of those. The primary exception is a RuntimeException. Since this does not match
the catch clause, the exception is thrown to the caller. Eventually the main method would
output something like the following:

Exception in thread "main" java.lang.RuntimeException: turkeys ran off
atJammedTurkeyCage.main(JammedTurkeyCage.java:20)
Suppressed: java.lang.IllegalStateException: Cage door does not close

304 Chapter 6 = Exceptions and Assertions

atJammedTurkeyCage.close(JammedTurkeyCage.java:5)
atJammedTurkeyCage.main(JammedTurkeyCage.java:21)

Java remembers the suppressed exceptions that go with a primary exception even if
we don’t handle them in the code. Now let’s look at what happens if two exceptions are
thrown while closing resources:

27: try (JammedTurkeyCage tl = new JammedTurkeyCage();

28: JammedTurkeyCage t2 = new JammedTurkeyCage()) {
29: System.out.println("turkeys entered cages");
30: } catch (IllegalStateException e) {

31: System.out.println("caught: " + e.getMessage());
32: for (Throwable t: e.getSuppressed())

33: System.out.println(t.getMessage());

34: }

On line 29, the turkeys enter the cages without exception. Then Java tries to close both
cages automatically. t2 is closed first, since Java closes resources in the reverse order from
which it created them. This throws an exception. Since it is the first exception to occur,
it becomes the primary exception. Then t1 is closed. Since an exception has already been
thrown, this one becomes a suppressed exception. The output is

turkeys entered cages
caught: Cage door does not close
Cage door does not close

Finally, keep in mind that suppressed exceptions apply only to exceptions thrown in the
try clause. The following example does not throw a suppressed exception:

35: try (JammedTurkeyCage t = new JammedTurkeyCage()) {

36: throw new IllegalStateException("turkeys ran off");

37: } finally {

38: throw new RuntimeException("and we couldn't find them");
39: }

Line 36 throws an exception. Then Java tries to close the resource and adds a suppressed
exception to it. Now we have a problem. The finally block runs after all this. Since line
38 throws an exception, the previous exception is lost. This has always been and continues
to be bad programming practice. We don’t want to lose exceptions.

Remember that Java needs to be backward compatible. try and finally were both
allowed to throw an exception long before Java 7. When this happened, the finally block
took precedence. This behavior needs to continue. Since automatic resource management
was new with Java 7, the try-with-resources part was allowed to behave differently. Regular
finally blocks could not change.

Rethrowing Exceptions 305

Putting It Together

You’ve learned two new rules for the order in which code runs in a try-with-resources
statement:

= Resources are closed after the try clause ends and before any catch/finally clauses.

= Resources are closed in the reverse order from which they were created.

Based on these rules, can you figure out what this code prints?

public class Auto implements AutoCloseable {
int num;
Auto(int num) { this.num = num; }
public void close() {
System.out.println("Close: " + num);
}
public static void main(String[] args) {
try (Auto al = new Auto(l); Auto a2 = new Auto(2)) {
throw new RuntimeException();
} catch (Exception e) {
System.out.println("ex");
} finally {
System.out.println("finally");

Since the resources are closed in the reverse order from which they were opened, we have
Close: 2 and then Close: 1. After that, the catch block and finally block are run—just
as they are in a regular try statement. The output is

Close: 2
Close: 1
ex

finally

Rethrowing Exceptions

It is a common pattern to log and then throw the same exception. Suppose that we have a
method that declares two checked exceptions:

public void parseData() throws SQLException, DateTimeParseException {}

306 Chapter 6 = Exceptions and Assertions

When calling this method, we need to handle or declare those two exception types.
There are few valid ways of doing this. We could have two catch blocks and duplicate the
logic. Or we could use multi-catch:

3 public void multiCatch() throws SQLException, DateTimeParseException {
4 try {

5 parseData();

6: } catch (SQLException | DateTimeParseException e) {

7 System.err.println(e);

8 throw e;

9 i

This doesn’t seem bad. We only have one catch block on line 6, so we aren’t duplicating
code. Or are we? The list of exceptions in the catch block and the list of exceptions in the
method signature of multiCatch() are the same. This is duplication.

Since there were a number of changes in Java 7, the language designers decided to solve
this problem at the same time. They made it legal to write Exception in the catch block but
really only a limited set of exceptions. The following code is similar to the preceding example:

3 public void rethrowing() throws SQLException, DateTimeParseException {
4 try {

5 parseData();

6: } catch (Exception e) {

7 System.err.println(e);

8; throw e;

9: I

We still have one catch block on line 6. This time, Java interprets Exception as the pos-
sible exceptions that can be thrown in the method. As long as all of these checked excep-
tions are handled or declared, Java is happy.

Notice how we said that the two examples are similar; that is, they are not the same.
What happens if parseData() throws a NullPointerException? In the multi-catch version,
the exception will not be caught in the catch block and will not be logged to System.err.
In the rethrowing example, it will be caught, logged, and rethrown.

Now, suppose that parseData() changes implementation to use a file system instead of
a database. The developers decided to change it slowly because they wanted to run both
systems in parallel for a while. They added an exception to the method signature, giving us
the following:

public void parseData() throws IOException, SQLException, DateTimeParseException

Let’s think about how our methods need to change. In the multi-catch example, we need
to make two changes:

public void multiCatch() throws IOException, SQLException, DateTimeParseException {
try {

Rethrowing Exceptions 307

parseData();

} catch (IOException | SQLException | DateTimeParseException e) {
System.err.println(e);
throw e;

I

We had to add the new exception to both the multi-catch and the method signature. We
also would likely have to update some of the callers of our method. Now we make the same
change to our rethrowing example:

public void rethrowing() throws IOException, SQLException,
DateTimeParseException {

try {
parseData();

} catch (Exception e) {
System.err.println(e);
throw e;

i}

This time, we only had to update the method signature. Java is able to infer that
Exception in the catch block now includes the additional type.

The developers finally finished their change and decided to remove SQLException from
the method signature leaving us with

public void parseData() throws IOException, DateTimeParseException {

We get to change the multi-catch version yet again. This time, we have to remove an
exception from the catch block, giving us the following:

public void multiCatch() throws IOException, SQLException,
DateTimeParseException {
try {
parseData();
} catch (IOException | DateTimeParseException e) {
System.err.println(e);
throw e;

I

We decide to leave the method signature of our method alone, so that our callers don’t
need to change. After all, we are allowed to throw extra exceptions. The rethrowing exam-
ple is better off. No code changes are required. Java merely interprets Exception to mean
the remaining two exception types.

)/ These changes are why many people prefer using unchecked exceptions.
,@TE You don’t have this trickle of changes when a method changes which
exceptions it throws.

308 Chapter 6 = Exceptions and Assertions

Working with Assertions

An assertion is a Boolean expression that you place at a point in your code where you
expect something to be true. The English definition of the word assert is to state that
something is true, which means that you assert that something is true. An assert statement
contains this statement along with an optional String message.

An assertion allows for detecting defects in the code. You can turn on assertions for test-
ing and debugging while leaving them off when your program is in production.

Why assert something when you know it is true? It is only true when everything is
working properly. If the program has a defect, it might not actually be true. Detecting this
earlier in the process lets you know something is wrong.

- When troubleshooting a problem at work, developers might tell people
‘dgrz that they don’t believe anything that they can’t see. Often the process of
verifying something they have verbally asserted to be true proves the
assumption was false.

In the following sections, we cover the syntax for using an assertion, how to turn them
on/off, and common uses of assertions.

The assert Statement
The syntax for an assert statement has two forms:

assert boolean_expression;
assert boolean_expression: error_message;

The boolean expression must evaluate to true or false. It can be inside optional paren-
thesis. The optional error message is a String used as the message for the AssertionError
that is thrown.

That’s right. An assertion throws an AssertionError if it is false. Since programs aren’t
supposed to catch an Error, this means that assertion failures are fatal and end the program.

The three possible outcomes of an assert statement are as follows:

= If assertions are disabled, Java skips the assertion and goes on in the code.

= Ifassertions are enabled and the boolean expression is true, then our assertion has
been validated and nothing happens. The program continues to execute in its normal
manner.

= If assertions are enabled and the boolean expression is false, then our assertion is
invalid and a java.lang.AssertionError is thrown.

Presuming assertions are enabled, an assertion is a shorter/better way of writing the
following:

Working with Assertions 309

if (!boolean_expression) throw new AssertionError();

The assert syntax is easier to read. But wait. Remember when we said a developer shouldn’t
be throwing an Error? With the assert syntax, you aren’t. Java is throwing the Error.

Suppose that we enable assertions by running the following example with the command
java -ea Assertions:

1: public class Assertions {

2: public static void main(String[] args) {
3: int numGuests = -5;

4: assert numGuests > 0;

5: System.out.println(numGuests);

6: }

7: }

We made a typo in the code. We intended for there to be five guests and not negative five
guests. The assertion on line 4 detects this problem. Java throws the AssertionError at
this point. Line 5 never runs since an error was thrown.

The program ends with a stack trace similar to this:

Exception in thread "main" java.lang.AssertionError
at asserts.Assertions.main(Assertions.java:7)

If we run the same program using the command line java Assertions, we get a differ-
ent result. The program prints -5. Now, in this example, it is pretty obvious what the prob-
lem is since the program is only seven lines. In a more complicated program, knowing the
state of affairs is more useful.

Enabling Assertions

By default, assert statements are ignored by the JVM at runtime. To enable assertions, use
the -enableassertions flag on the command line:

java -enableassertions Rectangle
You can also use the shortcut -ea flag:

java -ea Rectangle

Using the -enableassertions or -ea flag without any arguments enables assertions in
all classes except system classes. System classes are classes that are part of the Java runtime.
You can think of them as the classes that come with Java. You can also enable assertions
for a specific class or package. For example, the following command enables assertions only
for classes in the com.wiley.demos package and any subpackages:

310 Chapter 6 = Exceptions and Assertions

java -ea:com.wiley.demos... my.programs.Main

The three dots means any class in the specified package or subpackages. You can also
enable assertions for a specific class:

java -ea:com.wiley.demos.TestColors my.programs.Main

You can disable assertions using the -disableassertions (or -da) flag for a specific
class or package that was previously enabled. For example, the following command enables
assertions for the com.wiley.demos package but disables assertions for the TestColors
class:

java -ea:com.wiley.demos... -da:com.wiley.demos.TestColors my.programs.Main

Enabling assertions is an important aspect of using them, because if asser-

A&TE tions are not enabled, assert statements are ignored at runtime. Asser-
tions were added to the Java language in the Java 1.4 release, as was the
new assert keyword. Keep an eye out for a question that contains an
assert statement but that is not executed with assertions enabled; the
assert statement is ignored in that situation.

Using Assertions

You can use assertions for many reasons, including the following. You won’t be asked to iden-
tify the type of assertion on the exam. This is just to give you ideas of how they might be used.

Internal Invariants You assert that a value is within a certain constraint. assert x < 0is
an example of an internal invariant.

Class Invariants You assert the validity of an object’s state. Class invariants are typically
private methods within the class that return a boolean. The upcoming Rectangle class
demonstrates a class invariant.

Control Flow Invariants You assert that a line of code you assume is unreachable is never
reached. The upcoming TestSeasons class demonstrates a control flow invariant.

Preconditions You assert that certain conditions are met before a method is invoked.

Post Conditions You assert that certain conditions are met after a method executes
successfully.

The following example demonstrates a control flow invariant. Suppose that we have the
following enum declaration. Notice how winter is missing from the list of seasons. This is
intentional. Our zoo is closed in the winter because it is too cold for visitors.

public enum Seasons {
SPRING, SUMMER, FALL

Working with Assertions n

The following TestSeasons class contains a switch statement that switches on a
Seasons object. Because there are only three possible outcomes, the default case statement
on lines 11-12 should never execute:

1 public class TestSeasons {

2 public static void test(Seasons s) {

3 switch (s) {

4 case SPRING:

5: case FALL:

6 System.out.println("Shorter hours");
7 break;

8 case SUMMER:

9: System.out.println("Longer hours");
10: break;

11: default:

12: assert false: "Invalid season";

13: 113

Because the value of s on line 3 can only be SPRING, SUMMER, or FALL, and the switch
statement has a case for all three of these outcomes, we can assert that line 12 is not reach-
able. This example is typical of when to use an assertion. We know that WINTER is not a
choice because it is not in the enum. If this situation ever changes, the assertion will tell us
about it. Notice that if it does, an AssertionError is thrown because the boolean is false.

Consider whether to throw a RuntimeException or use an assertion in
TE these scenarios. In real programs, you might prefer the RuntimeException.
If this were to fail in production, would you want the program to throw an

exception or fail silently? The assertion would fail silently, since you'd have
assertions off in production.

The only way this assertion will fail is if somehow the enum is modified. Suppose that
you are working on a project that uses the Seasons enum, and the zoo decides to start
opening in the winter. The assertion can help uncover the ripple effect of such a change.
Suppose the new version of Seasons looks like this:

public enum Seasons {
SPRING, SUMMER, FALL, WINTER

See if you can determine the output of the following main method added to the
TestSeasons class:

public static void main(String [] args) {
test (Seasons.WINTER);

312 Chapter 6 = Exceptions and Assertions

Because WINTER is a new season and not one of the cases, the default block executes and
the assert fails. (It has to fail because it uses false for the boolean expression.) Assuming
assertions are enabled, an AssertionError is thrown and the following stack trace displays
a message like this:

Exception in thread "main" java.lang.AssertionError: Invalid season
at TestSeason.main(Test.java:12)
at TestSeason.main(Test.java:18)

A control flow assertion is a common use of assert statements. You could place an
assert statement at any location in your code that you assume will not be reached.

Assertions Should Not Alter Outcomes

Because assertions can, should, and probably will be turned off in a production environ-
ment, your assertions should not contain any business logic that affects the outcome of
your code. For example, the following assertion is not a good design because it alters the
value of a variable:

int x = 10;
assert ++x > 10; // Not a good design!

When assertions are turned on, x is incremented to 11; but when assertions are turned
off, the value of x is 10. This is not a good use of assertions because the outcome of the
code will be different depending on whether assertions are turned on.

The following example demonstrates a class invariant. A Rectangle object is not con-
sidered valid if either its width or height is negative. Examine the following Rectangle
class, and assuming that assertions are turned on, determine the output of running the
main method:

: public class Rectangle {
private int width, height;

1

2

3

4 public Rectangle(int width, int height) {
5: this.width = width;

6 this.height = height;

7

8

9

public int getArea() {
10: assert isValid(): "Not a valid Rectangle";
11: return width * height;

Working with Assertions 313

12: }

13:

14: private boolean 1isValid() {

15: return (width >= 0 && height >= 0);

16: }

17:

18: public static void main(String [] args) {

19: Rectangle one = new Rectangle(5,12);

20: Rectangle two = new Rectangle(-4,10);

21: System.out.println("Area one = " + one.getArea());
22: System.out.println("Area two = " + two.getArea());
23: }

24:}

The isValid method is an example of a class invariant. It is a private method that tests
the state of the object. Line 10 invokes isValid in an assertion statement before computing
the area. Within main, Rectangle one is valid and its area is output. Rectangle two has a
negative width, so the assertion fails on line 10. The output is shown here:

Area one = 60

Exception in thread "main" java.lang.AssertionError: Not a valid Rectangle
at Rectangle.getArea(Rectangle.java:10)
at Rectangle.main(Rectangle.java:22)

Validating Method Parameters

Do not use assertions to check for valid arguments passed in to a method. Use an
IllegalArgumentException instead. For example, the constructor of Rectangle should
throw an IllegalArgumentException when either the width or height is negative:

public Rectangle(int width, int height) {
if(width < 0 || height < 0) {
throw new IllegalArgumentException();
}
this.width = width;
this.height = height;

314 Chapter 6 = Exceptions and Assertions

This constructor greatly improves the reliability of the Rectangle class, because there
is no way to set the field’s width and height except in the constructor. Remember,
assertions are for situations where you are certain of something and you just want to
verify it. You cannot be certain that someone instantiating a Rectangle will pass in
positive values. However, with the Rectangle constructor defined here, you should be
able to assert with a great deal of certainty that invoking isValid on any Rectangle
object will return true.

Assertions are used for debugging purposes, allowing you to verify that something that
you think is true during the coding phase is actually true at runtime.

Summary

An exception indicates that something unexpected happened. Subclasses of java. lang.
Error are exceptions that a program should not attempt to handle. Subclasses of java.
lang.RuntimeException are runtime (unchecked) exceptions. Subclasses of java.lang.
Exception that do not subclass java.lang.RuntimeException are checked exceptions. Java
requires checked exceptions to be handled or declared.

If a try statement has multiple catch blocks, at most one catch block can run. Java
looks for an exception that can be caught by each catch block in the order in which they
appear, and the first match is run. Then execution continues after the try statement to
the finally block if present. If both catch and finally throw an exception, the one from
finally gets thrown. Common checked exceptions include ParseException, IOException,
and SQLException.

Multi-catch allows catching multiple exception types in the same catch block. The types
are separated with a pipe (]). The multiple exception types are not allowed to have a sub-
class/superclass relationship. The variable in a multi-catch expression is effectively final.

Try-with-resources allows Java to take care of calling the close() method. This is called
automatic resource management. Objects instantiated in the try clause must implement the
AutoCloseable interface. This interface has a single method close() and can throw any
type of Exception. Unlike traditional try statements, try-with-resources does not require
a catch or finally block to be present. If the try clause and one or more of the close()
methods throw an exception, Java uses suppressed exceptions to keep track of both.
Similarly, if multiple close() methods throw an exception, the first one is the primary
exception and the others are suppressed exceptions. getSuppressed() allows these excep-
tions to be retrieved.

An assertion is a boolean expression placed at a particular point in your code where
you think something should always be true. A failed assertion throws an AssertionError.
Assertions should not change the state of any variables. You saw how the -ea and -enable-
assertion flags turn on assertions.

Exam Essentials 315

Exam Essentials

Determine if an exception is checked or unchecked. Checked exceptions

are in the Exception class hierarchy but not the RuntimeException hierarchy.
DateTimeParseException, I0OException, and SQLException are common checked
exceptions.

Recognize when to use throw vs. throws. The throw keyword is used when you actually
want to throw an exception. For example, throw new RuntimeException(). The throws
keyword is used in a method declaration.

Create code using multi-catch. The multiple exception types are separated by a pipe (|).
They are not allowed to have a subclass/superclass relationship.

Identify the similarities and differences between a traditional try statement and try-with-
resources statement. A traditional try statement is required to have at least one catch
block or a finally block. A try-with-resources statement is allowed to omit both. A try-
with-resources statement is allowed to create suppressed exceptions in the try clause or
when closing resources. Neither is allowed to create suppressed exceptions by combining
the try and finally (or catch) clauses.

Know how to enable assertions. Assertions are disabled by default. Watch for a question
that uses assertions but does not enable them or a question that tests your knowledge of
how assertions are enabled from the command line.

316 Chapter 6 = Exceptions and Assertions

Review Questions

1. Which of the following pairs fills in the blanks to make this code compile?

5: public void read() SQLException {
6: new